Смекни!
smekni.com

Коэффициент гидравлического трения (стр. 1 из 2)

Определение коэффициента гидравлического трения

В уравнении Бернулли, записанном для двух сечений потока вязкой жидкости (обозначения общепринятые):

(1)

где

представляет собой суммарную величину потерянного напора:

, (2)

где

– потери напора по длине расчетного участка трубопровода, вызванные трением жидкости о стенки, называются путевыми потерями;

– потери напора на коротких участках трубопровода, обусловленные изменением формы или размеров (иногда и того и другого одновременно), называемые потерями в местных сопротивлениях, или местными потерями напора.

В данной работе рассматриваются путевые потери. Согласно уравнению неразрывности для потока вязкой несжимаемой жидкости (ρ = const):

(3)

При течении жидкости в горизонтально расположенном трубопроводе (z1=z2) постоянного сечения (S1=S2) скорость в начале и конце расчетного участка будет одинаковыми (V1=V2) и уравнение Бернулли примет вид:


(4)

Путевые потери определяются по формуле Дарси – Вейсбаха:

, (5)

где λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси);

L – длина расчетного участка трубопровода;

d – диаметр трубопровода;

J – средняя скорость потока.

Экспериментально установлено, что коэффициент гидравлического трения в общем случае зависит от режима течения, характеризуемого числом Рейнольдса (Re), и состояния внутренней поверхности трубопровода, характеризуемой относительной шероховатостью (ε). Влияние этих факторов на величину λ при ламинарном и турбулентном режимах течения проявляется по-разному.

При ламинарном режиме, т.е.

(ν – кинематический коэффициент вязкости) состояние поверхности стенки не влияет на сопротивление движению жидкости и λ = f (Re). Значение коэффициента λ в этом случае определяется по теоретической формуле Пуазейля:

(6)

Подставляя это выражение в (5), получим формулу для определения путевых потерь при ламинарном течении в виде:


, (7)

где

Из (7) следует, что в ламинарном потоке потери напора по длине трубопровода (путевые потери) прямо пропорциональны средней скорости течения жидкости.

Турбулентный режим течения характеризуется интенсивным перемешиванием жидкости как в поперечном (по сечению потока), так и в продольном (по длине потока) направлениях. Однако в диапазоне чисел Рейнольдса

непосредственно вблизи стенок трубопровода существует слой движущейся жидкости, течение в котором сохраняется ламинарным. Этот слой называется ламинарным подслоем или ламинарной пленкой. Толщина ламинарной пленки (δЛ) зависит от режима течения δЛ = f (Re) и с увеличением числа Рейнольдса δЛ уменьшается.

Стенки любого тракта имеют естественную шероховатость поверхности, первоначально обусловленную материалом и технологией изготовления трубопровода и меняющуюся при его эксплуатации вследствие взаимодействия материала трубопровода с рабочей жидкостью. Средняя высота выступов шероховатости (Δ) называется абсолютной шероховатостью. В зависимости от соотношения между δЛ и Δ (см. рис 1) трубы или стенки рассматривают как гидравлически гладкие или гидравлически шероховатые.

Рис. 1


Если δЛ > Δ, ламинарный подслой как бы сглаживает шероховатость стенки: поток не получает дополнительной турбулизации от шероховатости, поскольку образующиеся на вершинах выступов шероховатости вихри подавляются ламинарной пленкой. Труба, в которой выступы шероховатости находятся в пределах толщины ламинарного подслоя, называется гидравлически гладкой.

Если δЛ < Δ, выступы шероховатости, оказавшись в турбулентном ядре потока, вносят дополнительное возмущение в обтекающую их жидкость, что приводит к увеличению сопротивления и, следовательно, потерь напора. Такая труба является гидравлически шероховатой.

В зависимости от режима течения, одна и та же труба может быть как гидравлически гладкой, так и гидравлически шероховатой, поскольку с ростом числа Рейнольдса толщина ламинарного подслоя уменьшается, и, наоборот – с увеличением Re, δЛ возрастает.

Естественная шероховатость всегда неравномерна, так как выступы имеют различные формы, размеры и расположения. Поэтому вводится понятие эквивалентной (или равномерно-зернистой) абсолютной шероховатости ΔЭ. Эта искусственно создаваемая шероховатость, например, путем наклеивания на стенки трубы песчинок одного размера (одной фракции) и на одинаковых расстояниях друг от друга, обеспечивает создание сопротивления трубопровода, равного сопротивления при естественной шероховатости.

Значения абсолютной (Δ) и эквивалентной (ΔЭ) шероховатости для труб из некоторых материалов приведены в таблице 1.

Таблица 1.

№ п/п Материал и состояние труб Δ,мм ΔЭ,мм
1 Трубы из стекла, латуни или медные, новые 0,0015…0,01 0,001…0,01
2 Трубы стальные, бесшовные (цельнопотянутые), новые, чистые 0,02…0,1 0,02…0,5
3 Трубы стальные, сварные, новые, чистые 0,03…0,12 0,03…0,1
4 Трубы стальные, бывшие в употреблении 0,2…1,2 0,2…1,25
5 Трубы чугунные, новые 0,25…1,0 0,2…0,5
6 Трубы чугунные, бывшие в употреблении 0,5…1,4 0,5…1,5

При определении λ учитывается не абсолютная шероховатость, а ее отношение к диаметру (или радиусу) трубы, т.е. относительная шероховатость:

;

Это обусловлено тем, что одна и та же абсолютная шероховатость оказывает большее влияние на сопротивление движению в трубопроводе меньшего диаметра.

Предложено большое количество эмпирических и полуэмпирических формул для определения коэффициента гидравлического трения λ, учитывающих особенности течения при турбулентном режиме. Эти особенности в конечном итоге сказываются на зависимости путевых потерь от средней скорости течения.

Так, для гидравлически гладких труб потери напора по длине пропорциональны средней скорости в степени 1,75. В переходной области от гидравлически гладких к шероховатым трубам (

) на величину λ оказывают влияние одновременно два фактора: число Рейнольдса и относительная шероховатость, т.е. в переходной области λ = f (Re, ε). В этой области, называемой зоной доквадратного сопротивления, потери напора по длине пропорциональны средней скорости в степени 1,74…2.

Для гидравлически шероховатых труб, когда ламинарная пленка практически полностью разрушается, коэффициент λ уже не зависит от Re, а определяется лишь относительной шероховатостью, т.е. λ = f (ε). Эта область называется зоной квадратичного сопротивления, т. к. hl~J2, или автомодельной областью, так как независимость λ от Re означает, что потери напора по длине, определяемые по формуле (5) пропорциональны квадрату средней скорости. Начало этой области определяется условием

.

Наиболее часто применяемые формулы для вычисления значения коэффициента λ приведены в таблице 2.

Определение λ по приведенным в таблице 2 и другим формулам облегчается использованием таблиц и номограмм, содержащихся в учебных и справочных пособиях.

При проведении данной работы рассматриваются режимы течения в гидравлически гладких трубах.

Таблица 2

Зона сопротивления, режим Границы зоны Расчетные формулы Зависимость потерь напора от скорости
1. Ламинарный
;ф. Пуазейля
hl~J
2. Зона гладкостенного сопротивления
;ф. Блазиуса
hl~J1,75
ф. Конакова
3. Зона доквадратичного сопротивления
ф. Кольбрука Уайта
hl~J1,75 ¸ 2
ф. Альтшуля
4. Зона квадратичного сопротивления
ф. Прандтля-Никурадзе
hl~J2
ф. Шифринсона

Описание установки.