Смекни!
smekni.com

Разработка ветроэнергетической установки (стр. 1 из 13)

РЕФЕРАТ

96 с., 42 рис., 3 табл., 1 приложение, 23 источников.

Объект исследования – силовой полупроводниковый преобразователь в составе электромеханической системы имитатора ветротурбины.

Цель работы – построение математической модели силового полупроводникового преобразователя, а также проверка адекватности модели, т. е. сравнение экспериментальных данных с результатами расчета по методике.

В данной магистерской работе представлен автоматизированный электропривод постоянного тока. Произведен расчет силового полупроводникового преобразователя, конструктивный расчет сглаживающего реактора, а также расчет заземления и защитного отключения. С помощью многокритериальной оптимизации выбрано оптимальное значение индуктивности сглаживающего реактора. Построена математическая модель рассчитанной схемы силового полупроводникового преобразователя. Приведены структурная и принципиальная электрическая схемы и сборочный чертеж силового блока электромеханической системы для имитации поведения ветротурбин.

Проведены экспериментальные исследования электромагнитных процессов в разработанном трехфазном мостовом выпрямителе в составе электропривода имитатора.

ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА, ВЕТРОТУРБИНА, МУЛЬТИПЛИКАТОР, АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД, МОМЕНТ ИНЕРЦИИ, МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА, ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА, МОСТОВОЙ ВЫПРЯМИТЕЛЬ, СГЛАЖИВАЮЩИЙ РЕАКТОР, ВНЕШНЯЯ ХАРАКТЕРИСТИКА, МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ.


ВВЕДЕНИЕ

Интерес к проблемам использования возобновляемых источников энергии (ВИЭ) связан с увеличением масштабов потребления ископаемого топлива.

В настоящее время запасы органического топлива истощаются и его использование во все возрастающих объемах ведет к загрязнению окружающей среды стало всеобщим. Выделение углекислого газа, приводящего к глобальному потеплению. В будущем неизбежно сокращение потребления органического топлива и его замена другими источниками энергии. Использование ВИЭ наиболее привлекательно, так как оно не нарушает естественного баланса энергии, получаемой нашей планетой. К ВИЭ относятся: солнечная радиация, энергия ветра, энергия рек, приливов и океанских волн, энергия, заключенная в биомассе и органических отходах. Для Украины перспективным является использование ветроэнергетических ресурсов.

В ближайшем будущем ожидается значительный рост использования ВИЭ. В настоящее время доля возобновляемой энергии в энергобалансе Европы составляет 5,4 %. К 2010 году планируется довести этот показатель до 12%.

Энергия ветра известна человечеству не менее 2000 лет; в последние 10 15 лет бурно развивалось ее использование для производства электрической энергии. К настоящему времени в мире установлено более 20000 ветроэлектрических агрегатов, общая мощность которых превышает 16 млн. кВт. Современные ветроэнергетические установки (ВЭУ) имеют мощность от единиц киловатт до нескольких мегаватт и позволяют экономически эффективно с высокой степенью надежности преобразовывать энергию ветра. ВЭУ могут использоваться для различных целей, начиная от заряда аккумуляторных батарей (АБ) и энергоснабжения различных объектов (дома, фермы и пр.) до подачи электроэнергии в сети централизованного электроснабжения.

Энергия ветра в течение длительного времени рассматривается в качестве экологически чистого неисчерпаемого источника энергии. Прежде чем энергия ветра сможет принести значительную пользу, должны быть решены многие проблемы, главные из которых: высокая стоимость ветроэнергетических установок, их способность надежно работать в автоматическом режиме в течение многих лет и обеспечивать бесперебойное электроснабжение. Поэтому, сегодня наиболее важной задачей стоящей перед ветроэнергетикой является снижение удельной стоимости электрооборудования ВЭУ. Одним из путей снижения стоимости является применение более экономичных структур электрооборудования ВЭУ. [1]

Однако, перед разработчиками ЭО возникает ряд специфических трудностей, связанных с наличием в составе ВЭУ ветротурбины (ВТ). Испытание новых систем необходимо проводить в полевых условиях. Кроме того, стохастический характер ветрового потока (ВП) делает затруднительным испытание ВЭУ во всех возможных режимах.

Одним из путей преодоления возникших проблем, является применение имитатора ВТ, т. е. электромеханической системы способной имитировать механические характеристики реальной ВТ при различных заданных скоростях ВП. Такой подход является экономически выгодным, поскольку позволит производить испытания новых видов электрооборудования ВЭУ в лабораторных условиях без выезда на полигон.


1 ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ ВЕТРА С ПОМОЩЬЮ ВЭУ

1.1 Характеристики ветрового потока

Свойства ветра. Ветер – это направленное перемещение воздушных масс. Ветровую энергию можно рассматривать как одну из форм проявления солнечной энергии, потому что Солнце является тем первоисточником, который влияет на погодные явления на Земле. Ветер возникает из-за неравномерного нагрева Солнцем поверхности Земли.

Ветер меняется с течением времени. В большинстве регионов наблюдаются значительные сезонные изменения ветровых потоков. Причем в зимние месяцы скорость ветра обычно выше, чем летом. Дневные изменения скорости ветра наблюдаются, как правило, вблизи морей и больших озер. Утром солнце нагревает землю быстрее, чем воду, поэтому ветер дует в направлении побережья. Вечером же земля остывает быстрее, чем вода, поэтому ветер дует от побережья.

Скорость ветра зависит от высоты над уровнем земли. Близко к земле ветер замедляется за счет трения о земную поверхность. Таким образом, ветры бывают сильнее на больших высотах по отношению к земле. Для сельскохозяйственных полей и пустынных территорий при увеличении высоты над поверхностью земли в два раза наблюдается увеличение скорости ветра приблизительно на 12%.

На скорость ветра оказывают значительное влияние географические условия и характер земной поверхности, включая различные природные и искусственные препятствия, такие, как холмы и пр., а также деревья и здания. По этой причине ВЭУ располагают, по возможности, на возвышенных и удаленных от высоких деревьев, жилых домов и других сооружений местах, т.к. такие препятствия снижают скорость ветра и приводят к завихрениям потока, затрудняющим преобразование энергии ветра.

Среднегодовая скорость ветра VС характеризует ветровой потенциал территории. Это скорость ветра, которая определяется как среднее арифметическое значение всех наблюдаемых скоростей ветра в течение года. Средние скорости ветра могут быть вычислены и для других периодов, например: месячные, дневные, часовые.

Энергия, заключенная в ветре, находится в кубической зависимости от величины скорости ветра. Удвоение скорости ветра дает увеличение энергии в 8 раз. Таким образом, средняя скорость ветра 5 м/с может дать примерно в 2 раза больше энергии, чем ветер со средней скоростью 4 м/с.

Характеристики ветра измеряются на метеостанциях. На основе данных многолетних наблюдений скоростей ветра составляются специализированные карты ветров. [1]

Энергия ветра. Главной особенностью ветровой энергии является неравномерность ее проявления во времени и пространстве. Есть регионы, где средняя за год скорость ветра на высоте 10 м от уровня земли не превышает 3 м/с. Там нельзя рассчитывать на эффективную работу ветроустановок. Однако в стране имеется много мест, где возможность экономически выгодного использования энергии ветра не вызывает сомнений, но конкретный выбор участков для установки ВЭУ требует специального обоснования и проверки.

Кинетическая энергия Е, которой обладает воздушный поток, зависит от его массы m и скорости V может быть определена по формуле:

(1.1)

Если в формулу (1.1) подставить значение массы воздуха, протекающей через ветротурбину двигателя, то получим выражение для его мощности:


(1.2)

где ρ – плотность набегающего воздушного потока;

А0 – ометаемая ветротурбиной поверхность;

V0 – скорость набегающего воздушного потока.

К основным факторам, влияющим на точность оценки энергии ветра, относятся: изменение плотности воздуха в зависимости от высоты над уровнем моря и температуры и соответствие имеющихся данных по ветру ветровым условиям конкретного местоположения ветродвигателя.

Плотность воздуха на уровне моря при нормальных климатических условиях, соответствующих нормальному атмосферному давлению 760 мм рт. ст. и температуре +15 °С, равна ρ = 1,226 кг/м3. В зависимости от высоты над уровнем моря плотность ρ изменяется, снижаясь почти на 10% при высоте 1 км и на 20% при высоте 2,5 км над уровнем моря, что приводит к соответствующему снижению потенциала ветровой энергии. При снижении температуры воздуха плотность ρ воздуха увеличивается, а при повышении – снижается. Так, при понижении температуры воздуха от нормального уровня (+15 оС) на 25 °С (до -10 °С), плотность возрастает на 10%, а при повышении температуры на 25 оС (до +40 °С) — плотность воздуха снижается приблизительно на 7,5%.

Скорость ветра Vi на высоте Нi, если она отличается от высоты, на которой производились измерения, определяется по формуле:

(1.3)

где m = 0,14 – степенной коэффициент для прибрежных зон Западной Европы.

Непрерывная регистрация измерений скорости ветра на метеостанциях в течение многих лет показала, что среднегодовые и средне меся иные значения скорости ветра в конкретном месте варьируют в узком диапазоне. Несмотря на то, что ветер – это случайный процесс, емy присущи определенные закономерности.

Кроме средней скорости ветра большое значение имеет распределение скоростей ветра во времени – частота повторяемости отдельных значений скоростей ветра. В последние 20 лет широкое применение во всем мире получило теоретическое распределение повторяемости скоростей по Вейбуллу, которое дает неплохое совпадение с результатами наблюдений. Дифференциальная повторяемость скоростей ветра по градациям по Вейбуллу ФV имеет следующее выражение: