Смекни!
smekni.com

Электромагнитные волны в волноводном тракте (стр. 2 из 11)

Предложена [12] точная формула для расчёта числа типов волн, возбуждаемых в прямоугольном волноводе для произвольной полосы частот. Показано, что в пределе высоких частот полученная формула переходит в известное асимптотическое приближение. Проведено сравнение результатов расчёта числа типов волн по точной и асимптотической формулам.

Рассмотрено [13] применение конечно-разностных методов для расчёта диэлектрических волноведущих систем. Исследованы основные причины, препятствующие широкому использованию метода конечных разностей для расчёта открытых диэлектрических структур и волноводов с диэлектрическим наполнением. Указаны перспективные направления развития рассматриваемых методов.

В работе [14] излагается обзор современного состояния волноводной техники. Представлены частотные характеристики коэффициентов затухания в волноводах различных типов (круглых, прямоугольных, коаксиальных Н- образных). Дан также обзор конструкций устройств на волноводах с увеличенными размерами поперечного сечения: волноводных переходов, устройств для подавления волн высших типов .

В [15] даны результаты расчетов характеристик коэффициента затухания ряда типов волн в прямоугольных и круглых волноводах. Расчеты выполнены в приближении малых потерь. Результаты расчетов представлены в виде графиков зависимости нормированных коэффициентов затухания для 14 первых типов ТЕ и ТМ в прямоугольном волноводе и 15 в круглом от длины волны, нормированной к ширине прямоугольного волновода.

Изучены [16] общие закономерности формирования амплитудно-частотной характеристики симметричных волноводных или периодических резонаторов на основе выяснения их взаимосвязи с собственными частотами колебаний открытых структур. Исследовано влияние количества и местоположения собственных частот колебания одного или различных типов симметрии на частотные характеристики. Даны простые оценки зон наличия или отсутствия резонансов полного отражения и прохождения, добротности и величин смещения резонансов относительно реальных частей собственных частот.

При размерах систем сопоставимых с длиной волны излучения, распространяющихся в данной системе, проявляются квантовые эффекты, характерные для электромагнитных процессов происходящих в атомных и молекулярных системах для электромагнитных волн видимого диапазона, т.е. в оптике. В частности, поведение электрона в атоме водорода описывается на основе постулатов, т.е. утверждений, которые не могут быть доказаны, а воспринимаются как факт на основе экспериментальных результатов. Основным постулатом является утверждение о существовании стационарных орбит, на которых электрон не излучает, причем длина орбиты при этом равна длине волны электрона. Экспериментальную проверку данного постулата в оптике затруднительна, поскольку длина волны при этом весьма мала. Для радиотехнических систем, где длины волн имеют макроскопические размеры, постановка такого эксперимента вполне осуществима [16]. Эксперимент по поведению бегущих электромагнитных волн в замкнутой системе, длина которой кратна длине волны, описан в литературе как демонстрационный, хотя изучение поведения бегущих волн в замкнутых системах представляет и чисто практический интерес.

В настоящей работе проведено экспериментальное исследование поведения бегущих электромагнитных волн в волноводном тракте. Целью настоящей работы являлось исследование частотной зависимости амплитуды бегущей электромагнитной волны в кольцевом волноводном тракте. Для этого необходимо было решить следующие задачи:

1) определить оптимальные условия возбуждения бегущей электромагнитной волны в кольцевом тракте;

2) исследовать процесс образования стоячей волны в кольцевом резонаторе и получить соответствующие частотные зависимости;

3) получить частотные зависимости для процесса интерференции бегущих волн в кольцевом резонаторе.

1. Общие сведения о волнах

1.1 Волновой процесс

Термины «волна», «волновой процесс», употребляемые в физике и технике, получили широкое распространение. Под распространением волны понимается постепенное вовлечение среды в некоторый физический процесс, приводящее к передаче энергии в пространстве.

Пусть в какой-то области пространства наблюдается физический процесс, который в точке

можно охарактеризовать функцией
. В другой точке
измерения величины
в это же время, быть может, покажут отсутствие процесса
. Но через какое-то время он будет передан средой, и мы отметим, что

В простейшем случае будет обнаружено лишь запаздывание процесса во времени, т. е.

, где
— время, требуемое для прохождения пути
со скоростью
. Пусть в пространстве существует зависимость только от одной координаты
. Характеризующая процесс функция

(1.1)

построена при

и при
. Очевидно,
.

Говорят, что функция (1.1) описывает волну. Иногда волны этого рода называют «недеформируемыми»; имеется в виду, что временной закон во всех точках пространства — с точностью до сдвига

— одинаков. Волна называется плоской и однородной. Дело в том, что, положив
, мы задаем плоскость, на которой мгновенное значение функции
постоянно. Любую такую плоскость называют фронтом волны. В некоторый момент
фронт, для которого
движется вдоль оси
со скоростью
,
. Плоскую однородную волну, распространяющуюся в противоположном направлении, следует описывать при помощи выражения (1.1) с изменением знака

(1.1а)

Обратимся к однородному волновому уравнению

(1.2)

Если пользоваться декартовой системой координат

и рассматривать только процессы, не зависящие от
и
, то волновое уравнение примет вид

(1.3)

Путем непосредственной подстановки нетрудно убедиться, что функции, выражаемые формулами (1.1) и (1.1а), являются решениями одномерного волнового уравнения (1.3).

Общее решение уравнения (1.3) выражает формула

(1.4)

где

и
— произвольные дважды дифференцируемые функции. Это наложение двух плоских однородных недеформируемых: волн, распространяющихся в противоположных направлениях.

1.2 Гармонические волны

Если в (1.1) взять такую функцию

, что
то в каждой точке пространства процесс будет иметь характер гармонических колебаний

или

(1.5)

Такого рода плоская однородная волна называется гармонической, а введенный параметр

— волновым числом.