Смекни!
smekni.com

Электромагнитные волны в волноводном тракте (стр. 9 из 11)

Рисунок 3.4 Распределение поля, как функция частоты (1- режим бегущей волны, 2- режим стоячей волны)

Контроль режима осуществлялся при помощи измерительной линии, включенной в состав волноводного кольца. На рис 3.8 и 3.9 соответственно представлены частотные зависимости КСВН в волноводном кольце в обоих режимах. Очевидно, что на высоких частотах ( выше 6,5 ГГц), что обусловлено сечением волновода, режим с большой достоверностью можно считать режимом бегущей волны, т.к. значение КСВН для этих частот не превышает 1,8, в то время, как в режиме стоячей волны в этом диапазоне КСВН > 2×102.

3.3 Метод измерения коэффициента отражения

Задача измерения больших коэффициентов отражения актуальна при определении параметров короткозамкнутых нагрузок в волноводных трактах. Особенностью подобных измерений является большой динамический диапазон измеряемых величин, что затрудняет использование методов, связанных с применением измерительной линии ввиду сложности процедуры обеспечения квадратичности характеристики детектора в требуемом диапазоне. В настоящей работе теоретически и экспериментально обоснована методика измерения больших коэффициентов отражения на основе применения кольцевого резонатора бегущей волны.

При широкодиапазонном возбуждении такого резонатора генератором качающейся частоты наблюдается чередование максимумов и минимумов амплитуды СВЧ-поля, как функция частоты возбуждения. Нетрудно показать, что соответствующие значения амплитуд определяются собственным затуханием линии α. Действительно, амплитуда в максимуме поля определяется, как результат интерференции волн, которые совершили целое число “оборотов” в кольцевой системе.

Е=

Так-как в максимуме поля j= 2kp. А в минимуме j= (2k+1)p/2, то

Емакс= Е0(1-e-α)-1

Емин= Е0(1+e-α)-

1

Если внести в кольцевую систему короткозамкнутую нагрузку, то её можно рассматривать, как отрезок короткозамкнутой линии, в которой установится режим стоячей волны в полном соответствии с рассмотренным во второй главе материалом. Тогда амплитуда поля в максимумах и минимумах аналогично рассмотренному выше для режима бегущих волн с учетом коэффициента отражения от обоих поверхностей представима в виде:

Емакс= Е0(1-Гe-α)-1,

Емин= Е0(1+Гe-α)-1.

Очевидно, что, исключив из уравнений параметры собственного затухания линии, можно определить модуль коэффициент отражения нагрузки Г.

3.4 Реактивная нагрузка в линии

Известно, что внедрение диафрагмы в волновод эквивалентно включению в состав тракта реактивной нагрузки, характер которой определяется ориентацией диафрагмы относительно широкой стенки волновода. Данное обстоятельство позволяет судить о перспективности внедрения отражающей плоскости в кольцевой резонатор бегущей волны с целью его настройки – изменения. На рисунеке приведены осциллограммы частотной зависимости амплитуды поля при введении в зазор кольцевой системы диафрагмы ножевого типа.

Рисунок 3.5 Осциллограмма частотной зависимости амплитуды поля

Более высокие максимумы соответствуют режиму бегущей волны (а), низкие – дополнительные максимумы (б и в), возникающие при введении диафрагмы. Смещение начальных максимумов имеет место, однако составляет незначительную величину, в то время, как смещение побочных максимумов весьма значительно. На рисунке - б представлен случай введения диафрагмы параллельно широкой стенке, а на рисунке в – для случая введения диафрагмы параллельно узкой стенке. Очевидно, что в первом случае частота резонанса сдвигается в сторону низких частот, которые на осциллограмме слева, а во втором – в сторону высоких частот. При полном введении диафрагмы количество максимумов удваивается, и положения обоих добавочных максимумов совпадают. Таким образом, оказывается возможной настройка резонатора бегущей волны на любую частоту. Возможно также введение в волноводное кольцо диафрагмы, ножевая поверхность которой ориентирована перпендикулярно диагонали сечения волновода. В этом случае сопротивление носит чисто активный характер и влияет только на добротность резонатора.

Отмеченное свойство диафрагмы в кольцевой системе позволяет судить о возможности её применения не только для настройки резонатора, но и для целей согласования. Она может быть использована в качестве трансформатора сопротивления в волноводном тракте, в том числе – и в случае реактивной нагрузки для компенсации индуктивной либо емкостной составляющей. На представленных ниже зависимостях видно, что смещение начального максимума пренебрежимо мало и не превышает 5 МГц на основной частоте 7 ГГц.

3.5 Проверка аппаратной функции

При проведении измерений на установке данного типа появилась возможность определения зависимости и проверки аппаратной функции прибора измерения (Генератор качающейся частоты и индикатор КСВН и ослабления) в режиме бегущих волн. Аппаратная функция это закон по которому проходит измерение и изменение каких- либо параметров на конкретной установке, т. е. в нашем случае функция отклика системы на внешнее воздействие.

Для проведения эксперимента в нашу установку, в одно из плеч волноводноготракта был внедрен атенюатор поляризационного типа. Который осуществлял ослабление сигнала СВЧ . Измерения проводились на двух частотах: F1 = 8.355 Гц и F2 = 7.848 Гц. На установке регистрировались значения минимумов αmin(A) и максимумов αmax(A) при введении ослабления от 0 дБ до 10 дБ . Данные измерений приведены в таблице №1 и №2. Далее по этим измерениям были построены графики зависимости относительной величина Ат (отн.ед.) от ослабления аттенюатора A (дБ) в интервалах [0;1] и [0;10]. В ходе анализа графиков выяснилось, что с учетом погрешностей измерения и потерь, наблюдаемая нами зависимость практически линейна. Следовательно и линейна аппаратная функция установки .

A (дБ) – показания ослабления аттенюатора .

αmax(A) – положение максимума при заданной величине ослаблении.

αmin(A) – положение минимума при заданной величине ослаблении.

Ат (отн.ед.) – теоритическое значение величины ослабления.

Таблица данных №1.

F1 = 8.355 Гц

A (дБ)

Ат (отн.ед.)

αmax(A)

αmin(A)

0

0,489

5,10

1,225

1

1,052

2,50

1,210

2

1,479

1,90

1,195

3

1,876

1,60

1,175

4

2,057

1,50

1,160

5

2,645

1,32

1,145

6

3,206

1,22

1,125

7

3,358

1,19

1,110

8

3,637

1,17

1,110

9

3,709

1,15

1,095

10

4,016

1,13

1,090


Таблица данных.

F2 = 7.848 Гц


Таблица данных №2.

F1 = 7,848 Гц

A (дБ)

Ат (отн.ед.)

αmax(A)

αmin(A)

0

1,396

1,840

1,110

1

1,840

1,515

1,100

2

2,260

1,350

1,095

3

2,573

1,270

1,090

4

2,868

1,210

1,080

5

3,218

1,170

1,080

6

3,376

1,135

1,060

7

3,770

1,110

1,060

8

4,272

1,090

1,060

9

4,672

1,080

1,060

10

4,663

1,070

1,050




Заключение