- PG_3_16.GRPи PG_4_16.GRP - базисные наборы, состоящие из 16 спектров, использованные для анализа авторами метода "регуляризации" [4] (Provencher& Glockner), предназначенные для определения вторичной структуры по 3 и 4 структурным классам соответственно (смотри ниже);
- PG_3_20.GRPи PG_4_20.GRP - базисные наборы, содержащие те же самые 16 спектров, что и в двух предыдущих наборах, плюс 4 спектра денатурированных белков;
- HJ_16.GRPи HJ_22.GRP - базисные наборы, состоящие из 16 и 22 спектров соответственно, использованные для анализа авторами метода "ортогональных спектров" [7] (Henessey& Johnson), предназначенные для определения вторичной структуры по 5 структурным классам (смотри ниже).
В программе предусмотрена возможность создания собственных групп базисных спектров. Для этого необходимо воспользоваться командой главного меню Group/Create, позволяющей выбрать из списка существующих спектров те, которые вы хотите включить в свой базисный набор. Аналогичным образом осуществляется редактирование групп базисных спектров (команда главного меню Group/Edit). Удаление группы базисных спектров осуществляется с помощью команды главного меню Group/Delete.
Выбор набораструктурных типов. В программе STRUCTUREпредопределены следующие 3 набора типов вторичной структуры белка:
Provencher 3 (PG3.STR) | ALFA_hl (a-спираль)BETA_sh (b-структура)Remain (остальные типы) |
Provencher 4 (PG4.STR) | ALFA_hl (a-спираль)BETA_sh (b-структура)BETA_tn (b-поворот)Remain (остальные типы) |
Johnson 5 (HJ.STR) | ALFA_hl (a-спираль)BETA_Ash (антипараллельная b-структура)BETA_Psh (параллельная b-структура)BETA_tn (b-поворот)Other (остальные типы) |
Набор Allstructures (FULL.STR) содержит дополнительные типы вторичной структуры белка, однако он ни с одной из предопределенных групп базисных спектров не используется.
Каждая группа базисных спектров соответствует одному из выше перечисленных наборов структурных типов. Это соответствие выглядит следующим образом:
PG_3_16.GRPи PG_3_20.GRP - Provencher3;
PG_4_16.GRP и PG_4_20.GRP - Provencher 4;
HJ_16.GRP и HJ_22.GRP - Johnson 5.
При выборе одной из групп базисных спектров необходимо выбрать соответствующий набор типов вторичной структуры белка. Выбор нужного набора структурных типов осуществляется с помощью команды главного меню Options/Structuretypes.
Запуск вычислений. Для начала вычислений необходимо воспользоваться командой главного меню Calculate. В появляющемся меню нужно выбрать один из предлагаемых методов вычислений. В появляющемся после этого списке имеющихся белковых спектров необходимо выбрать анализируемый спектр. Если для расчетов были выбраны программы CONTIN, VARSELEC, PROVCDили DEF_CLASS, то необходимо также выбрать группу базисных спектров, на которой будут основаны вычисления. После этого производится запуск вычислений.
Если для расчетов была выбрана программа VARSELEC, то необходимо также установить порядок исключения спектров из исходного базисного набора для процедуры "выбора переменных" с помощью команды главного меню Options/Var.select. Для этого необходимо указать число спектров, исключаемых на каждом шаге вычислений. После его задания автоматически вычисляется общее количество шагов, требуемых для перебора всех возможных комбинаций. Если перебор всех возможных комбинаций не требуется, необходимо указать номер начальной и конечной комбинации.
Время вычислений равняется в среднем 1-3 минутам, однако может составлять значительно больший интервал для программы VARSELECпри задании очень большого количества комбинаций базисных спектров.
Результаты вычислений можно просмотреть с помощью команды Calculate/Result.
Поглощение света в видимом и ультрафиолетовом диапазонах обусловлено электронными переходами в молекулах поглощающего вещества. Поглощение света в инфракрасном диапазоне имеет иную природу. Оно связано с переходами между колебательными уровнями основного состояния молекулы. Полосы поглощения, отвечающие колебательным переходам, обычно лежат в диапазоне длин волн от 2000 до 50000 нм или, как принято записывать для ИК-спектров, в диапазоне волновых чисел от 5000 до 200 см-1.
Колебательные спектры подчиняются в сущности тем же закономерностям, что и электронные. Однако для колебательных переходов характерна значительно меньшая интенсивность, чем для электронных. Следовательно, при регистрации ИК-спектра образец должен быть гораздо более концентрированным. Кроме этого, многие полосы ИК-спектров белков, в том числе соответствующие пептидным хромафорам, расположены в той спектральной области, где наблюдается сильное поглощение воды. Использование D2О вместо Н2О иногда помогает обойти эту трудность, но не решает проблему полностью, поскольку полная замена лабильных протонов белка на дейтерий часто связана с потерей его нативной конформации.
Описываемый ниже метод определения вторичной структуры белка основан на использовании ИК-спектров поглощения белков в Н2О [8-10]. Проблема, связанная с их измерением, была решена авторами метода с помощью довольно сложной процедуры компенсации поглощения воды и использования очень узких ячеек (с длиной оптического пути около 6-12 мкм). Поскольку все измерения проводились в Н2О трудностей с поддержанием нативной конформации белков не возникало.
Колебательные полосы поглощения обычно порождаются переходами, которые можно довольно точно отнести к определенным химическим связям. В случае белков наиболее интересными являются три инфракрасные полосы, соответствующие колебательным переходам в пептидном остове. Это полосы, связанные с растяжением связи N-H (около 3300 см-1), растяжением связи C=O (1640-1660 см-1, полоса амид I) и деформацией связи N-H (1520-1550 см-1, полоса амид II). Эти полосы довольно легко зарегистрировать, поскольку каждое пептидное звено дает вклад в их интенсивность.
Образование водородных связей при формировании вторичной структуры белка приводит к сдвигу энергии этих трех пептидных колебаний. Первые две полосы, отвечающие валентным колебаниям, смещаются в область более низких энергий, поскольку наличие водородной связи облегчает смещение атома азота амидной группы и атома кислорода карбонильной группы в направлении акцептора или донора протона соответственно. Полоса амид IIсмещается в сторону более высоких энергий, так как водородная связь препятствует изгибанию связи N-H.
Влияние водородных связей на полосы амид Iи амид IIв случае a-спирали и b-структуры оказывается различным, что дает возможность использовать ИК-спектры для определения вторичной структуры белков. Ниже представлена таблица, суммирующая данные о влиянии вторичной структуры на положение полос амид Iи амид II. В ней приведены положения максимумов (n0) и значения интенсивности в максимумах (Е0) для полос амид Iи амид II, усредненные по нескольким модельным полипептидам и фибриллярным белкам в Н2О [9]:
Тип вторичной | Амид I | Амид II | ||
структуры | n0, см-1 | Е0, л·моль-1·см-1 | n0, см-1 | Е0, л·моль-1·см-1 |
a-спираль | 1647 | 700 | 15511520 | 31080 |
b-структура | 16951619 | 180980 | 15331563 | 340100 |
неупорядочен-ная форма | 1651 | 320 | 1550 | 210 |
Следует отметить, что расщепление полос амид Iи амид IIпроисходит за счет взаимосвязанности колебаний в отдельных пептидных группах.
На рисунке 2.1.1 представлены ИК-спектры трех модельных полипептидов, находящихся в конформациях a-спирали, b-структуры и неупорядоченной формы.
В целом, проблемы, решаемые при анализе ИК-спектров белков с целью определения их вторичной структуры, очень схожы с проблемами, возникающими при анализе спектров кругового дихроизма белков. При этом также используется набор ИК-спектров белков с известной вторичной структурой, используемых в качестве базисных. Так, например, в методе, описанном в работах [8-10], анализ базисного набора, состоящего из 13 спектров глобулярных белков и 6 спектров фибриллярных белков и полипептидов в Н2О в диапазоне 1800-1480 см-1, осуществляется с помощью методов "регуляризации" [4] и "ортогональных спектров" [6], рассмотренных выше.
Авторы этого метода вводят дополнительную процедуру, позволяющую исключить вклад в ИК-спектр белка поглощения боковых групп аминокислотных остатков. Ими было показано, что этот вклад составляет около 20% от суммарной интенсивности полос амид Iи амид II. Возможность проведения такой процедуры определяется тем, что вклады в ИК-спектр поглощения белка от боковых групп аминокислотных остатков и полипептидного остова являются аддитивными. Для оценки поглощения боковых групп было проведено измерение ИК-спектров водных (Н2О) растворов аминокислот. Оказалось, что наиболее сильно поглощают в исследуемой части ИК-диапазона боковые группы аминокислот аспарагина, глутамина, аспарагиновой кислоты, глутаминовой кислоты, аргинина, лизина, тирозина, фенилаланина и гистидина. Было обнаружено также сильное поглощение заряженных a-амино - и a-карбоксильной групп аминокислот. Поэтому их поглощение также необходимо учитывать при анализе белкового спектра. Суммарно, ИК-спектр белка может быть представлен в следующем виде:
. (2.2.1) - спектр поглощения полипептидного остова белка, а - спектр поглощения боковых групп аминокислотных остатков белка, вычисляемый по формуле , (2.2.2)