Смекни!
smekni.com

Расчет кожухотрубного теплообменника (стр. 5 из 6)

Участок напорного трубопровода от насоса до теплообменника

м.

Согласно расчетной схеме (рис. 12) на напорном участке трубопровода от насоса до теплообменника имеется два местных сопротивления: два плавных поворота –

[1, табл. 3.3].

Поэтому

м.

Суммарные потери напора на участке напорного трубопровода от насоса до теплообменника:

м.

Теплообменник

м.

Определим напор, теряемый в местных сопротивлениях теплообменника (рис. 13).

Рис. 13 – Коэффициенты местных сопротивлений теплообменника

Предварительно вычислим площади потока в различных участках.

1.Площадь поперечного сечения штуцера:


м2;

2. Площадь поперечного сечения крышки (свободного сечения аппарата)

м2;

3. Площадь поперечного сечения 56 труб теплообменника:

м2.

Скорости и скоростные напоры в соответствующих сечениях:

м/с;

м;

м/с;

м;

м/с;

м.

Коэффициенты местных сопротивлений:

а) при входе потока через штуцер в крышку (внезапное расширение):


;

б) при входе потока из крышки в трубы (внезапное сужение):

;

в) при выходе потока из труб в крышку (внезапное расширение):

;

г) при входе потока из крышки в штуцер (внезапное сужение):

.

Вычисляем потери напора в местных сопротивлениях:

а) при входе потока через штуцер:

м;

б) при входе потока из крышки в трубы первого хода аппарата:

м;

в) при выходе потока из труб в крышку:


м;

г) при выходе потока из крышки через штуцер:

м;

д) при повороте из одного хода в другой на 180° (

=2,5):

м.

Суммарные потери напора в местных сопротивлениях теплообменника:

Общие потери напора (по длине и в местных сопротивлениях теплообменника):

м.

Диаметр напорного трубопровода dн = 0,05 м совпадает с диаметрами штуцеров dш = 0,05 м, следовательно при входе и выходе из теплообменника потерь напора не будет .

Участок напорного трубопровода от теплообменника до стерилизуемого аппарата


.

м.

Участок напорного трубопровода от теплообменника до стерилизуемого аппарата включает следующие местные сопротивления: 6 плавных поворот на 900

. Тогда сумма коэффициентов местного сопротивления
.

м.

м.

Суммарные потери напора в насосной установке (сети)

м

3.2 Определение требуемого напора насоса

Требуемый напор насоса определяем по формуле:

, (17)

где Н=8м– высота подъёма жидкости в насосной установке (от насоса), м,

hвс – высота всасывания насоса, hвс= 0,5 м;

Рк – давление в стерилизуемом аппарате , Рк = 0,55 МПа;

Рат – атмосферное давление, Рат = 9,81×104 Па;

– суммарные потери напора в сети,
= 9,17 м.

По формуле (17):

м.

3.3 Выбор типа и марки насоса по расчетному напору и заданной подаче

По полю характеристик V – Н насосов для чистой воды [8, c. 328] по заданной подаче V = 4×10-3 м3/с (14,4 м3/ч) к рассчитанному требуемому напору Нтр =64,4 м выбираем насос по ГОСТ 22247-96: К 290/18б-У2, n=1450 об/мин.

3.4 Построение характеристик насоса и трубопровода. Определение рабочей точки насоса

По каталогу насоса для химических производств [6] строим рабочие характеристики выбранного насоса – зависимости Н = f(V), N = f(V), h = f(V).

Для построения характеристики трубопровода рассмотрим его уравнение (17).

Первые два слагаемых уравнения являются величиной постоянной и определяют собой статистический напор, тогда

,

где

м.

Так как трубопровод эксплуатируется в квадратичной зоне сопротивлений (Re >105), то зависимость потерь напора в трубопроводе от изменения скоростей носит квадратичный характер, т.е.

, (18)

где в – коэффициент пропорциональности, определяемый по координатам т. А, лежащей на этой кривой.

Н = f(V), η=f(V)

Для этой точки имеются:

м3/с – (по заданию);

НД = Нтр = 64,4м

м.

Отсюда

.

Уравнение кривой сопротивления трубопровода, выражающее собой потребные напоры насоса при подаче различных расходов по заданному трубопроводу


Задаваясь различными значениями расходов V, рассчитываем соответствующие им значения Нтр = f(V).

Результаты расчета сводим в таблицу 2.

Таблица 2 Характеристики трубопровода

V Нст, м
, м
, м
м3 м3
0 0 55,3 0 55,3
0,0011 4 0,69 55,99
0,0016 6 1,46 56,76
0,0022 8 2,76 58,06
0,0028 10 4,47 59,77
0,0039 14 8,67 63,97
0,0044 16 11,03 66,33
0,0050 18 14,25 69,55
0,0055 20 17,24 72,54

По данным таблицы 2 строим характеристику трубопровода Нтр = f(V), отложив на оси ординат величину Нст =55,3 м.

Точка пересечения характеристик насоса и трубопровода определяет рабочую точку А. Координаты рабочей точки:

VА = 16 м3/ч = 0,0044 м3/с; Н = 66 м;

%;

Ne=

кВт.

Так как VА = 16 м3/ч больше заданной подачи VА=14,4 м3/ч, то необходимо отрегулировать работу насоса на сеть одним из способов: прикрытием задвижки на напорной линии (дросселирование); уменьшением частоты вращения вала рабочего колеса насоса; обрезкой рабочего колеса.


Заключение

Расчет курсового проекта состоит из трех основных расчетов: теплового, конструктивного и гидравлического.

В тепловом расчете определили необходимую площадь теплопередающей поверхности, в нашем случае F = 17,5 м2, которая соответствует заданной температуре и оптимальным гидродинамическим условиям процесса. По полученным расчетным путем данным выбрали теплообменник

гр. А ГОСТ 15122-79.