Наступила новая эра усиления мощности магнитов, но не путем увеличения их размеров, а посредством совершенствования их формы и борьбы с насыщением.
2.2 Общие сведения об электромагнитах
Электромагнитом называется всякое железное, стальное или чугунное тело (сердечник), могущее быть временно намагниченным посредством пропускания электрического тока по проводнику (обмотка), окружающему это тело.
Вокруг всякого проводника, по которому проходит электрический ток, возникает магнитное поле, характер которого может быть описан указанием расположения и распределения магнитных силовых линий этого поля. Если проводник представляет тонкую проволоку значительной длины, то магнитные силовые линии созданного вокруг проволоки поля представляют вокруг каждой точки проволоки систему концентрических кругов, расположенных вокруг проволоки, как вокруг оси в соответствии с рисунком 2.1.
Рисунок 2.1 – Магнитные силовые линии электромагнита
Направление линий сил (направление поля; то направление, в котором двигался бы вокруг проволоки свободный северный магнитный полюс) зависит от направления тока в проволоке; направление линий сил в зависимости от направления тока определяется следующим правилом если мы будем глядеть вдоль тока так, чтобы ток уходил от нас, то линии сил будут направлены по направлению движения часовой стрелки.
Сила поля в данной точке его (число линий сил, пересекающих площадку в 1 квадратный сантиметр, расположенную в данной точке перпендикулярно к направлению линий сил) растет пропорционально силе тока, проходящего по проволоке; уменьшается по мере удаления от проволоки пропорционально расстоянию от проволоки (закон Био и Савара, 1820 г.) и может быть выражена через
(2.1)где H – сила поля в динах (или число линий на 1 см2);
J – сила тока в амперах;
А – расстояние проволоки в см.
Если проволока представляет не прямую, а какую-нибудь линию в плоскости или пространстве, то характер поля её вообще будет иной, зависящий от формы проволоки. Так, если проволока согнута в плоское кольцо, то расположение линий сил будет таково, какое показано в одной из диаметральных плоскостей кольца в соответствии с рисунком 2.2.
Рисунок 2.2 – Расположение линий сил для проволоки, согнутой в кольцо
Сила поля в какой-либо точке на оси кольца, радиусом в R см, отстоящей на а см от плоскости кольца, равна
(2.2)Если проволока навита спирально вокруг кругового цилиндра (соленоид), то поле внутри её состоит из пучка почти параллельных и равномерно густо расположенных линий сил, расходящихся по мере приближения к концу соленоида и охватывающих его со всех сторон; линии сил в одной из плоскостей сечения соленоида, проходящей через его ось располагаются в соответствии с рисунком 2.3.
Рисунок 2.3 – Линии сил в плоскости сечения, проходящей через ось соленоида
Чем ближе расположены друг к другу отдельные витки соленоида, чем большее число витков приходится на единицу длины соленоида и чем больше длина соленоида, тем более параллельны по направлению и равномерны по густоте распределения линии сил внутри соленоида, т.е. тем однороднее до силе и направлению будет магнитное поле внутри соленоида.
Если на таком соленоиде длины L см расположено N витков проволоки, по которым проходит ток силой в J ампер, то число линий сил на площадку в 1 квадратный сантиметр, расположенную перпендикулярно к линиям сил внутри соленоида, или сила поля внутри соленоида, может быть выражена формулой
(2.3)Если соленоид по меньшей мере в 6 раз длиннее диаметра составляющих его витков, то приведенная формула (2.3) дает с точностью до 1% силу поля той части внутри соленоида, которая отстоит по меньшей мере на 2 диаметра от концов соленоида.
Направление линий сил, пронизывающих соленоид, может быть определено по выше приведенному правилу для прямолинейного проводника, но еще проще по ниже следующему правилу: если мы будем глядеть на конец соленоида, и ток будет кружить по виткам его до направлению движения часовой стрелки, то линии сил внутри соленоида будут направлены от нас внутрь соленоида; если ток идет по виткам против направления часовой стрелки, то линии сил идут изнутри соленоида к нам. Количество линий сил, пронизывающих соленоид, или магнитный поток Ф, пронизывающий его, равняется:
(2.4)где H – сила поля внутри соленоида (число линий сил на 1 см2);
S – сечение соленоида в см2.
По характеру внешнего поля, создаваемого им, соленоид качественно и количественно совершенно подобен магниту в соответствии с рисунком 2.4, из которого выходит Ф линий сил, т.е. на полюсах которого находится Ф/4 π единиц количества магнетизма.
Рисунок 2.4 – Линии сил постоянного магнита
По аналогии с магнитом тот конец соленоида, из которого выходят линии сил, можно назвать северным полюсом соленоида, а тот конец, в который входят линии сил, – южным полюсом. И во внешних своих проявлениях соленоид, обегаемый током, совершенно подобен магниту: будучи подвешен, он устанавливается в магнитном меридиане; разноименные полюсы двух соленоидов притягиваются, одноименные отталкиваются; на железо, на магнитную стрелку соленоид действует как магнит.
Таким образом, соленоид является магнитом, которого магнитные свойства можно по желанию возбудить и уничтожить и внутреннее однородное поле которого нам доступно. Такой соленоид-магнит не может, однако, даже в исключительных условиях сравниться по силе даже с самыми обыкновенными стальными магнитами.
Действительно, если мы предположим даже, что на 1 см длины соленоида приходится, например, 20 оборотов (N/L = 20) и что J = 10 ампер, то H будет равно (2.3) всего только около 250, между тем как стальные магниты средней силы дают магнитный поток, соответствующий H, равному около 1000.
Магнитный поток, даваемый соленоидом, можно значительно увеличить, если заполнить пространство внутри его сильно магнитным веществом – железом, сталью, чугуном. Такой соленоид с железным стержнем (сердечником) внутри его представляет электромагнит в соответствии с рисунком 2.5; ему можно придать самые различные формы, из которых две основные – стержневой электромагнит и подковообразный электромагнит.
Рисунок 2.5 – Положение полюсов электромагнита
Положение полюсов у электромагнита определяется по тому же самому правилу, как и у соленоида: если глядеть на полюс, и ток течет вокруг него по направленно движения часовой стрелки в соответствии с рисунком 2.5, то это – полюс южный, если против движения часовой стрелки, то это – полюс северный. Магнитный поток, исходящей из электромагнита, может быть сделан чрезвычайно большим; в некоторых практически достигнутых случаях из 1 см2 плоскости полюса выходило до 40000 линий сил (или индукции).
Число, показывающее во сколько раз увеличился магнитный поток от заполнения соленоида железом, не есть величина постоянная при данном соленоиде, данной силе тока и данном сорте железа, а зависит в сильной мере от формы железного сердечника, близости его полюсов друг от друга и т.д.
Причины, влияющие на величину магнитного потока, исходящего из электромагнита, не поддавались анализу, и посему предвычисление электромагнита с данными свойствами было почти невозможно, пока Роулэнд, Бозанке и их последователи не ввели в рассмотрение этого вопроса нового понятия о «магнитной цепи»; к краткому изложению этого понятия и перейдем.
Магнитный поток Ф, возникающий внутри соленоида, Ф = НS, может быть, согласно формуле (2.3), написан в виде
(2.5)Магнитный поток состоит из линий сил, исходящих из одного полюса, замыкающихся через окружающее пространство и внутреннюю полость соленоида, в соответствии с рисунком 2.3, и образующих, таким образом, замкнутую магнитную цепь. Поток Ф тем больше, чем больше числитель формулы (2.5) 0,4π NJ; в этом числителе стоит произведение NJ (ампер-обороты), являющееся причиной возникновения магнитного потока; числитель 0,4π NJ называют поэтому магнитодвижущей силой цепи.
Поток Ф тем меньше, чем больше знаменатель L/S, который, подобно электрическому сопротивлению, пропорционален длине пути магнитного тока (внутри соленоида) и обратно пропорционален сечению этого пути; по аналогии выражение L/S – называют магнитным сопротивлением воздушного пути внутри соленоида.
Таким образом, устанавливается аналогия между законом Ома для электрической цепи и правилом (2.5) магнитной цепи: сила электрического тока (величина магнитного потока) прямо пропорциональна электродвижущей силе (магнитодвижущей силе) и обратно пропорциональна электрическому (магнитному) сопротивлению цепи.
Относительно выведенной этим путем аналогии необходимо сделать следующие оговорки:
а) эта аналогия чисто формальная, так как по природе своей явление тока не может быть уподоблено явлению магнитного потока;