Уравнения Боголюбова
Уравнения Больцмана, идея которого принадлежит самому Больцману, не может считаться строгим. Действительно, запись этого уравнения, как уравнения непрерывности в m-пространстве с источниками (интеграл столкновений) в правой части, предполагает, во-первых, что изменение во времени функции распределения f(r, v, t) аддитивно относительно двух процессов, имеющих различное происхождение. Члены vi df/dxi и wi df/dvi в левой части
или
характеризуют потоки газа, возникающие вследствие существования градиента плотности и внешних полей, в то время как правые части возникают вследствие учета столкновений молекул. Таким образом предполагается, что потоки и столкновения не влияют друг на друга. Во-вторых, в интеграле столкновений значения функций
берутся в одной и той же точке пространства r, в то время как с учетом конечных размеров молекул координаты в функциях и в функциях должны быть выбраны различными.Далее, как мы уже упоминали, классический вывод уравнения Больцмана предполагает отсутствие корреляций между скоростями молекул. Наконец, что наиболее существенно, в уравнении Больцмана учитываются только попарные столкновения молекул, и нет более или менее очевидного рецепта, позволяющего учесть столкновения групп из трех, четырех и более молекул. Между тем ясно, что учет таких процессов существен для плотных газов.
В приближении парных соударений длина свободного пробега обратно пропорциональна плотности газа
(s— эффективное сечение парных столкновений).
Как известно, это приводит к тому, что коэффициенты переноса: À — коэффициент теплопроводности, a — коэффициент вязкости, не зависят от плотности п и, стало быть, от давления. При учете многочастичных столкновений выражение для lдолжно иметь вид
,где коэффициенты a, А возникают в связи с учетом трехчастичных, коэффициенты b и В — в связи с учетом четырехчастичных и т. д. столкновений. В результате для длины пробега и для коэффициентов переноса должны возникнуть вириальные разложения такого же типа, какие возникают в статистической физике для уравнения состояния неидеального газа.
В связи со сказанным целесообразно подойти более строго к проблеме вывода кинетического уравнения и к его возможным обобщениям. Это можно сделать с помощью весьма общего и строгого метода, предложенного Н. Н. Боголюбовым, к краткому изложению которого мы и переходим.
Имеем систему из N одинаковых частиц, состояние которой в классической механике мы будем задавать с помощью 2N векторов ri, vi. Совокупность ri, и vi мы для краткости будем обозначать символом xi а произведение d3rid3vi - символом dxi.
Введем функцию распределения F(N)(x1, … ,xN, t) в Г-пространстве, считая координатами бN-мерного Г-пространства координаты и проекции скоростей всех частиц. Выражение
F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN
дает вероятность того, что изображающая точка в Г-пространстве находится в объеме dx1, dx2 ... dxN, а функция F(N) нормирована на единицу
ò F{N)(х1, х2, ... , xN, t)dx1dx2 ... dxN=1. (1)
Будем в дальнейшем считать, что внешние поля отсутствуют и частицы взаимодействуют с потенциалом взаимодействия U(rik) = ти (rik). Для исключения граничных эффектов мы будем рассматривать термодинамический предел, при котором
, a w=V/N остается конечным.Дальнейшие рассуждения основаны на уравнении Лиувилля, которое мы запишем здесь в виде
, (2)где оператор
называется оператором Лиувилля и определяется формулой (3)причем wi, k = -ди (ri,k)/dri - ускорение, придаваемое i-й частице взаимодействием с k-й частицей. Функции распределения r(р, q) и функции F{N) (ri, vi, t) по существу идентичны, и, следовательно, F(N) (xi, t) подчиняется уравнению
Следует обратить внимание читателя на следующие принципиальные свойства уравнения Лиувилля.
1. Функция F(N) (х1, х2, ... , xN, t) лишь «насильственно» была нами связана с вероятностными представлениями. Мы могли бы рассматривать ее не как плотность вероятности для единичной системы с координатами ri, vi, а как произвольно заданную в начальный момент времени функцию распределения для ансамбля систем - ансамбля Гиббса.
Иначе говоря, мы можем себе представить, что при t = 0 мы «приготовляем» ансамбль, т. е. произвольным образом «высыпаем» изображающие точки в фазовое пространство, задавая тем самым F{N) {x1, ..., xN, 0). В дальнейшем эти «высыпанные» точки «плывут» по своим фазовым траекториям, подчиняясь исключительно законам механики. Таким образом, уравнение (2) вовсе не имеет статистического вероятностного содержания, а несет в себе только чисто механическую информацию.
2. Уравнение Лиувилля, являясь уравнением первого порядка по времени, описывает причинно-обусловленное изменение функции F(N)(х1, ..., xN, t). При заданном ее начальном значении F(N) (х1, ... , xN, 0) уравнение (2) однозначно предсказывает все будущие значения F(N)(xi,t).
3. Как и всякое уравнение классической механики, уравнение Лиувилля обратимо во времени. Это значит, что при замене t на -t оно остается неизменным. Следовательно, наряду с «прямым» движением экземпляров ансамбля, столь же возможным при соответствующем изменении начальных условий, является и «обращенное» движение.
4. В свете сказанного неудивительно, что решение уравнения Лиувилля эквивалентно решению динамической задачи, т. е. нахождению всех динамических траекторий. Формально это видно из того, что характеристики уравнения (2) имеют вид
,из которых следуют уравнения динамики в форме Ньютона
.Физически это следует из того, что мы можем «приготовить» начальный ансамбль в виде
, т. е. «высыпать» все изображающие точки в одну точку фазового пространства. В силу однозначности решения уравнения Лиувилля при заданном начальном условии движение изображающей точки и будет описывать эволюцию одной единственной динамической системы. Таким образом, наряду с методами решения задач динамики, основанными на интегрировании уравнений Ньютона, Лагранжа, Гамильтона и Гамильтона -Якоби, существует еще один метод - метод интегрирования уравнения Лиувилля. Однако для системы с огромным числом частиц этот метод столь же непригоден и столь же не нужен, как и все остальные, а для решения задач макроскопической неравновесной физики следует переходить к вероятностным методам.Введем с этой целью n-частичные функции распределения
. (4)Эти функции подчинены следующему из (1) условию нормировки:
, (5)и если мы придаем вероятностный смысл функции F(N) (х1,....,xN, t),
то и функции
приобретают статистическую интерпретацию. Здесь и в дальнейшем мы опускаем для краткости индекс (N) в обозначении F(nN). Выражение представляет собой вероятность того, что первые п частиц системы (а не ансамбля систем!) имеют координаты и скорости, лежащие в пределах (ri, ri + dri), (vi, vi + dvi).Выведем систему дифференциальных уравнений, которым подчиняются функции
. Умножим с этой целью уравнение (2) на и проинтегрируем полученное равенство, пользуясь выражением (3): (6)Заметим теперь, что в этом уравнении третье, шестое и седьмое слагаемые тождественно равны нулю. Действительно, каждое из этих слагаемых представляет собой интеграл от трехмерной дивергенции: третье слагаемое — в пространстве координат молекулы i, шестое и седьмое —в пространстве скоростей молекулы i. По теореме Гаусса они могут быть преобразованы в интеграл по граничной поверхности. Но функция Fn обращается в нуль, когда координаты любой частицы газа соответствуют точкам, лежащим на абсолютно непроницаемой стенке сосуда и, с другой стороны, функция распределения Fn стремится к нулю, когда
. Поэтому интеграл от дивергенции равен нулю и в координатном пространстве, и в пространстве скоростей. С другой стороны, пятое слагаемое в (6) можно преобразовать следующим образом. Отдельные слагаемые суммы по k отличаются лишь обозначением переменной интегрирования .Таким образом, получаем окончательно систему уравнений
. (7)