Смекни!
smekni.com

Дефекты в кристаллах (стр. 3 из 3)

Для того, чтобы частица перешла из одного междоузлия в соседнее, она должна преодолеть потенциальный барьер высотой Em. Частота перескоков частиц из одного междоузлия в другое будет пропорциональна

. Пусть частота колебания частиц, соответствует междоузлию v. Число соседних междоузлий равно Z. Тогда частота перескоков:
.

Диффузия за счет движений вакансий

Процесс диффузии за счет вакансий также является 2-х ступенчатым. С одной стороны, вакансии должны образовываться, с другой стороны, она должна перемещаться. Следует отметить, что свободное место (свободный узел), куда может переместиться частица, существует также лишь определенную долю времени пропорционально

, где Ev – энергия образования вакансий. А частота перескоков будет иметь вид:
, где Em – энергия движения вакансий, Q=Ev+Em – энергия активации диффузии.

Перемещение частиц на большие расстояния

Рассмотрим цепочку одинаковых атомов.

Предположим, что имеем цепочку одинаковых атомов. Они расположены на расстоянии d друг от друга. Частицы могут смещаться влево или в право. Среднее смещение частиц равно 0. В силу равновероятности перемещения частиц в обоих направлениях:

.

Найдем среднеквадратичное смещение:

.
.
,

где n – число переходов частиц, может быть выражено

. Тогда
. Величина
определяется параметрами данного материала. Поэтому обозначим:
– коэффициент диффузии, в итоге:

.

В 3-х мерном случае:

.

Подставим сюда значение q, получим:

.

Где D0 – частотный фактор диффузии, Q – энергия активации диффузии.

Макроскопическая диффузия


Рассмотрим простую кубическую решетку:

Мысленно между плоскостями 1 и 2 условно выделим плоскость 3. и найдем число частиц, пересекающих эту полуплоскость слева на право и справа на лево. Пусть частота перескоков частиц равна q. Тогда за время, равное

, полуплоскость 3 пересечет со стороны полуплоскости 1
частиц. Аналогично, за это же время
выделенную полуплоскость со стороны полуплоскости 2 пересечет
частиц. Тогда за время t изменение числа частиц в выделенной полуплоскости можно представить в следующем виде:
. Найдем концентрацию частиц – примесей в полуплоскостях 1 и 2:

.

Разность объемных концентраций C1 и C2 можно выразить в виде:

.

.

Рассмотрим единичный выделенный слой (L2=1). Мы знаем, что

– коэффициент диффузии, тогда:

– 1-й закон диффузии Фика.

Аналогично формула для 3-х мерного случая. Только в место одномерного коэффициента диффузии

, подставляем коэффициент диффузии для 3-х мерного случая
. Используя такую аналогию рассуждения для концентрации, а не для числа носителей, как в предыдущем случае, можно найти 2-й диффузии Фика.

– 2-й закон Фика.

2-й закон диффузии Фика очень удобен для расчетов, для практических приложений. В частности для коэффициента диффузии различных материалов. Например, имеем какой-то материал, на поверхность которого нанесена примесь, поверхностная концентрация которой равна Q см-2. Нагревая данный материал, осуществляют диффузию этой примеси в ее объем. В этом случае, в зависимости от времени устанавливается определенное распределение примеси, по толще материала для данной температуры. Аналитически распределение концентрации примеси, можно получить, решая уравнение диффузии Фика в следующем виде:


.

Графически это:


На этом принципе можно экспериментально найти параметры диффузии.

Экспериментальные методы исследования диффузии

Активационный метод

На поверхность материала наносят радиоактивную примесь, далее осуществляют диффузию этой примеси в материал. Затем послойно удаляют часть материала и исследуют активность, или оставшегося материала, или стравленного слоя. И таким образом находят распределение концентрации C по поверхности X(C(x)). Затем, используя полученное экспериментальное значение и последнею формулу, вычисляют коэффициент диффузии.

Химические методы

Они основаны на том, что при диффузии примеси, в результате ее взаимодействия с основным материалом образуется новые химические соединения с отличными от основных свойств решетки.

Методы p-n перехода

За счет диффузии примеси в полупроводниках на какой-то глубине полупроводника образуется область, в которой меняется тип его проводимости. Далее определяют глубину залегания p-n перехода и по ней судят о концентрации примесей на этой глубине. И далее делают по аналогии с 1-ым и 2-ым случаем.


Список использованных источников

1. Киттель Ч. Введение в физику твердого тела./ Пер. с англ.; Под ред. А. А. Гусева. – М.: Наука, 1978.

2. Епифанов Г.И. Физика твердого тела: Учеб. пособие для втузов. – М.: Высш. школ, 1977.

3. Жданов Г.С., Хунджуа Ф.Г., Лекции по физике твердого тела – М: Изд-во МГУ, 1988.

4. Бушманов Б. Н., Хромов Ю. А. Физика твердого тела: Учеб. пособие для втузов. – М.: Высш. школ, 1971.

5. Кацнельсон А.А. Введение в физику твердого тела – М: Изд-во МГУ, 1984.