Смекни!
smekni.com

Линейные электрические цепи постоянного и синусоидального тока (стр. 2 из 3)

Запишем систему уравнений по методу контурных токов, учитывая J1:

(R3 + R6 +R5) * I11 – (R5 + R6) * I22 = – (R3 + R6) * J1 – E6 + E1

– (R5 + R6) * I11 + (R2 + R5 + R6 + R7) * I22 = R6 * J1 + E6

20 * I11 – 10 * I22 = -30

-10 * I11 + 20 * I22 = 30


Решим систему по методу Крамера. Найдем определители:

D =

= 300, D11 =
= -300, D22 =
= 300.

Найдем контурные токи:

I11 = D11/D = -1 A; I22 = D22/D = 1 A

Токи в ветвях найдем как сумму контурных токов, текущих по ним, с учетом знаков:

I2 = I7 = I22 = 1A

I6 = – I11 + I22 – J1 = 1A

I5 = I11 – I22 = -2 A

I4 = J1 = 1A

I3 = I11 + J1 = 0

I1 = I11 = -1A

Проверка

1) Баллансмощностей:

I3*I3*R3 + I4*I4*R4 + I5*I5*R5 + I6*I6*R6 + I2*I2*(R2+R7) = E6*I6 + E1*I1 + J4 * U4,

5 + 5 + 20 + 10 = 25 – 10 + 25,

40 = 40


2) Проверка по первому закону Киргофа:

I4 + I1 = I3;

I6 + I3 = I2;

I4 + I5 + I6 = 0;

I1 = I2 + I5;

Задание 3

Принципиальная схема цепи выглядит следующим образом:

Преобразуем данную схему. Ветвь 1 исключим. Позже ток в этих ветвях найдем через закон Киргофа. Далее, найдем сопротивление, эквивалентное сопротивлению между узлами 1 и 2 (участок схемы с ветвями 1, 5, 7, 8).

Rэ = 1/(1/R5 + 1/R4) = 8/3 (Ом)

И заменим этот участок на одну ветвь с сопротивлением, равным Rэ. Получим следующую схему:

Найдем количество уравнений. Так как в цепи присутствуют независимые источники тока, то мы имеем:

Начертим граф. Пусть ветвь 1 составляет дерево.


I22


Теперь выберем независимые контуры. Пусть первый контур состоит из ветвей 1, 4, 5, и по нему течет ток I11 по часовой стрелке. Пусть второй контур состоит из ветвей 2, 4, 6, по нему течет ток I22 по часовой стрелке.

Запишем систему уравнений по методу контурных токов:


I11*(R7+R3) – I22*R3 = E6 – E3

– I11*R3 + I22*(R2 + R3 + R4) = E3 + J1*R2

12*I11 – 4*I22=0,

32/3*I22 – 4*I11= 28;


Решим систему по методу Крамера. Найдем определители:

D =

= 112, D22 =
= 336, D11 =
= 112.

Найдем контурные токи:

I11 = D11/D = 1 A; I22 = D22/D = 3 A

Теперь посчитаем токи во всех ветвях.

I1= J1 = 1 A

I2= I22 – J1= 2 A

I3 = I22 – I11 = 2 A

I4 = – I22= -3 A

I6 = I11 – J1 = 0 A

I7 = I11 = 1 A

· Теория, метод узловых потенциалов

Возьмём для примера ПЭС изображённую на рисунке 2.В изображённой цепи есть 3 узла. Так как любая(одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно заземлить, то есть принять потенциал равным 0. Заземлим узел с потенциалом

. По первому закону Кирхгофа для двух оставшихся узлов запишем систему уравнений:


Затем воспользуемся обобщённым законом Ома для участка цепи, содержащего источник ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах участка цепи и имеющейся на этом участке ЭДС E. По обобщенному закону Ома, запишем систему:

Подставим

в
и сгруппируем слагаемые с одинаковыми потенциалами:

– это и есть уравнения по МУП.

Уравнения имеют следующую структуру. Потенциал узла умножается на его собственную проводимость

– сумма проводимостей всех ветвей, сходящихся к узлу. Из этого произведения вычтем потенциалы узлов, имеющие с рассматриваемым общие ветви, умножаем на взаимную проводимость этих узлов (сумму проводимостей всех ветвей, которые находятся между этими двумя узлами). Потенциал узла, потенциал который мы приняли равным нулю, в уравнения не входит. Матрица
в общем случае будет симметрична, на главной диагонали будут стоять собственные проводимости узлов; эти элементы матрицы всегда будут иметь знак «плюс». Недиагональные элементы всегда будут иметь знак «минус». В правой части уравнений – записывается алгебраическая сумма произведений источников ЭДС на проводимости соответствующих ветвей, причем это произведение берется со знаком «+», если ЭДС направлена к узлу, и со знаком «–», если от узла.

Теперь рассмотрим случай, когда в цепи будут присутствовать источники тока (рис 3). Проводимость первой ветви в этом случае будет равняться нулю, и первое уравнение будет выглядеть следующим образом:

,

источник тока вписываем в правую часть со знаком «плюс», если он направлен к узлу и со знаком «минус» в противоположном случае. Количество уравнений не уменьшается, так как уравнения по

МУП не зависят от изначально выбранных направлений токов в ветвях. Количество уравнений по МУП рассчитываются по формуле:

.

Докажем правильность расстановки знаков, обратившись к стандартной ветви (рис 4). Рассмотрим схему, содержащую

узлов, и рассмотрим стандартную ветвь, сначала без источника тока.

Здесь:

.

Значит


Для любого узла выполняется первый закон Кирхгофа (выбрасываем только собственный узел).

.

Учитываем, что узел

к узлу никакого отношения не имеет, его можно вынести за скобку:

.

Отсюда

,

сумма проводимостей всех ветвей, сходящихся к узлу, умноженная на потенциал собственного узла, взятая со знаком «плюс», минус сумма произведений проводимостей между i-м и j-м узлом и потенциалов соответствующих узлов равна взятой со знаком «минус» сумме произведений источников на проводимости.

Мы доказали все знаки на частном примере.

Теперь включим источник тока (рис 5). В данном случае он будет вытекающим. С учетом его наличия, уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

.

Полученный результат также соответствует результату, полученному ранее для частного примера.

Если мы теперь посмотрим на уравнение

,

где в

могут входить как источники тока, так и источники ЭДС, умноженные на проводимость,
– собственные проводимости, берутся со знаком «+»,
– взаимные проводимости, берутся со знаком «–».

Получим эту же систему уравнений в стандартном виде, т.е. через стандартную ветвь. Для стандартной ветви:

.

Опираясь на закон Ома и записанные выше уравнения, получим:

.

Вспомним про редуцированную матрицу инциденций, умножим правую и левую часть на

: