Смекни!
smekni.com

Расчет переходных процессов в электрических цепях. Формы и спектры сигналов при нелинейных преобразованиях (стр. 1 из 2)

Курсовая работа

«Расчет переходных процессов в электрических цепях.

Формы и спектры сигналов при нелинейных преобразованиях»

Федеральное агентство по образованию Российской Федерации

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Дисциплина: Теоретические основы электротехники

Тема: Расчёт переходных процессов в электрических цепях

Срок представления работы к защите 2010 г.

Исходные данные для проектирования

1)E= 70В, R1= 2 кОм, R2= 3 кОм, L= 2 мГн

2) E=70В, L=2мГн, С=9мкФ, R=ρ/4

3) U0=0,5 В, U1=1 В, Um=1,5 В, S=16 мА/В, T=11 мкс

Содержание пояснительной записки курсовой работы.

1.Задание на курсовую работу.

2. Расчёт переходных процессов в цепи первого порядка.

3. Расчёт переходных процессов в цепях второго порядка.

4. Расчёт процессов в нелинейной цепи.

5. Список использованной литературы.

6. Перечень графического материала.

Для п. 4.2: заданная схема для расчёта, схема для определения начальных условий, схема для определения характеристического сопротивления, схема для нахождения принужденной составляющей, временные диаграммы токов и напряжений в электрической цепи.

Для п.4.3: заданная схема для расчёта, схема для определения начальных условий, схема для определения характеристического сопротивления, схема для нахождения принужденной составляющей, временные диаграммы токов и напряжений в электрической цепи.

Для п.4.4: схема цепи, ВАХ нелинейного элемента с наложенным входным воздействием, диаграммы напряжения и тока, спектр тока.

Руководитель работы: Борисовский Андрей Петрович

Задание выполнил: студент гр. 825 Королёв Владимир Валерьевич


Переходные процессы в линейных цепях первого порядка

Переходными называются процессы, возникающие в электрических цепях при переходе из одного установившегося режима в другой. В установившемся режиме токи и напряжения в цепи не изменяют своего характера. Если в цепи действует постоянная э.д.с., тогда в установившемся режиме токи и напряжения во всех участках цепи также постоянные. Переход от одного установившегося режима к другому при наличии в цепи реактивных элементов L и C не происходит скачкообразно, так как магнитная WL=I2L/2 и электрическая WE = U2C/2 энергии индуктивности и емкости не могут изменяться мгновенно. Из непрерывности изменения магнитного поля катушки индуктивности и электрического поля конденсатора вытекают два закона коммутации.

1. Ток через индуктивность в момент времени t=0 до коммутации равен току в момент времени t = 0+после коммутации:

.

2. Напряжения на емкости до коммутации и после коммутации равны:

.

Значения токов в индуктивности iL(0+) и напряжение на емкости Uc(0+) образуют независимые начальные условия.

Классический метод расчетов переходных процессов заключается в составлении интегро-дифференциальных уравнений на основе соотношений для мгновенных значений токов и напряжений в R, L, C элементах


.

Порядок n дифференциального уравнения определяется числом независимых реактивных элементов. Линейные цепи первого порядка содержат однотипные реактивные элементы (либо С, либо L).

Рис. 1. Схемы RC и RL цепей 1-го порядка: а, в – дифференцирующие цепи; б, г, – интегрирующие

Примеры RC и RL цепей первого порядка показаны на рис. 1. Изменения токов и напряжений X(t) в элементах цепи находятся из решения дифференциального уравнения вида

. (1)

где W(t) - внешнее воздействие. Общее решение X(t) дифференциального уравнения находится как сумма общего решения Xсв(t) однородного дифференциального уравнения (без правой части) и частного решения Xпр(t) неоднородного уравнения:

X(t) = Xпр(t) + Xсв(t).

Свободное решение Xсв(t) протекает в цепи без участия внешнего источника W(t), а принужденная составляющая Xпр(t) протекает в установившемся режиме под действием W(t). Свободная составляющая уравнения (1) находится в виде

Xсв(t) = Аеpt,

где р =b0/b1 является корнем характеристического уравнения

b1p + b0 = 0,

Постоянная интегрирования А находится из начальных условий.

Переходные процессы в линейных цепях первого порядка

E= 70 В

R1= 2 кОм

R2= 3 кОм

L= 2 мГн

Определение независимой переменной.

IL– независимая переменная

Составляем дифференциальное уравнение для переходного процесса в электрической цепи и записываем его в общее решение

IL(t) = iсв (t) + iпр

Определяем начальные условия

E=R1*iLiL = E/R1

iL = 70В/2 кОм = 35мА

Записываем решение дифференциального уравнения для свободной составляющей в виде

Iсв(t)= A*e p*t

Zp= 0

p = -(R1+R2)/L p=-25*105

τ = 1/|p| τ = 4*10-7(c)

Определяется принуждённая составляющая при t=∞

iпр=0

Определяется постоянная интегрирования А

IL (-0)= A*ept =A*e0*t =A

Ток через индуктивность равен:

IL(t)=35*10-3 * e-2500000t

Напряжение на индуктивности равно:

UL(t)=-L (du/dt) = -AL*p*(E/R1) * ept

UL(t)=175 *e-2500000t

Напряжение на R1 равно:

UR1(t)=70*e-2500000t

Переходные процессы в RLC цепях

Линейные цепи 2-го порядка содержат два разнотипных реактивных элемента L и C. Примерами таких цепей являются последовательный и параллельный резонансные контуры (рис.1).

а б

Рис. 1. Линейные цепи второго порядка: а – последовательный резонансный контур; б – параллельный резонансный контур

Переходные процессы в колебательных контурах описываются дифференциальными уравнениями 2-го порядка. Рассмотрим случай разряда емкости на RL цепь (рис.2). Составим уравнение цепи по первому закону Кирхгофа:

, (1)

где

После дифференцирования (1) получим

. (2)

Рис. 2. Включение RLC цепи на постоянное напряжение

Решение Uс(t) уравнения (2) находим как сумму свободной Uсв(t) и принужденной Uпр составляющих

Uс=Uсв+Uпр. (3)

Uпр зависит от Е, а Uсв(t) определяется решением однородного дифференциального уравнения вида

. (4)

Характеристическое уравнение для (4) имеет вид

LCp² + RCp + 1 = 0, (5)

Корни характеристического уравнения

.

Величину R/2L = α называют коэффициентом затухания,

– резонансной частотой контура. При этом

.

Характер переходных процессов в контуре зависит от вида корней p1 и p2. Они могут быть:

1) вещественные, различные при R > 2ρ, Q < 0,5;

2) вещественные и равные при R = 2ρ, Q = 0,5;

3) комплексно-сопряженные при R < 2ρ, Q > 0,5.

Здесь

– характеристическое сопротивление, Q = ρ/R – добротность контура.

В схеме рис. 2 до коммутации при t<0 емкость заряжена до напряжения Uc(0-) = E. После коммутации емкость начинает разряжаться и в контуре возникает переходный процесс. В случае 1 при Q < 0,5 решение уравнения (2) имеет вид

(6)

Для нахождения постоянных интегрирования А1 и А2 запишем выражение для тока в цепи

.

Используя начальные условия Uc(0-) = E и i(0-) = 0, получаем систему уравнений