Кваркові електромагнітні струми мають, зрозуміло, аналогічний вид:
Розходження зв'язане тільки з розходженнями в електричних зарядах. У той же час слабкі струми, пов'язані з розпадами часток, заряджені. Так, розпад мюона, містить добуток двох заряджених струмів:
.Значок L означає, що з 4-спінори виділений стан за допомогою матриці (1 – г5).
де GF
10-5Mp2 - знаменита константа Ферми. У теорії з обміном слабким проміжним бозоном первинним є лагранжиан взаємодії видуякий, до речі сказати, описує розпад W-Бозона по 3 лептонним каналам (сюди ще доданий заряджений струм тау-лептона і його нейтрино), причому
(h.c. - оператор ермитового сполучення, визначається як a+ = a*T, де * - комплексне сполучення, T - транспонування. Згрупуємо тепер лептони по левоспиральним слабким ізодублетам оскільки саме в таких комбінаціях вони беруть участь у слабких взаємодіях.
Правоспіральні лептони в рамках моделі Вайнберга-Салама в заряджених слабких переходах не беруть участь і по визначенню є слабкими ізосинглетами. Порівнюючи тепер слабкі левоспіральні заряджені струми із сильними струмами в співвідношенні бачимо, що розумно ввести поняття слабкого ізоспина, при цьому з'явиться й нейтральний струм виду пов'язаний з нейтральним бозоном W3.
де (м) і (ф) - нейтральні струми дублетів ( м-м-,нм) і ( ф-ф-,нф) виходять очевидним перетворенням з першого члена (нейтрального струму дублета (нe,e-)). Оскільки нейтральний слабкий струм - лінійна комбінація векторного й аксиально-векторного струмів, виникає спокуса включити в таку теоретичну модель і електромагнітну взаємодію. Але ми не можемо прямо додати до нейтрального слабкого струму електромагнітний струм, оскільки він не володіє слабким ізоспином. Зате можна додати ще один струм, взаємодіючий зі слабким векторним нейтральним бозоном Yм, приписавши останньому властивості слабкого ізосинглета. Лагранжиан, що описує взаємодія нейтральних слабких струмів з бозонами W3м,Y, запишеться у вигляді (обмежимося сектором лептонів
e, e-)Від двох бозоних полів W3м треба перейти до двох іншим бозоним полям
, , причому у зв'язку лептонів з полем уже закладений правильний електромагнітний струм. За змістом перетворення повинне бути ортогональним, і давайте виберемо його у виглядіПідставляючи ці вираження у формулу для струмів, одержимо в лівій частині рівності для електромагнітного струму вираження
звідки a = -1/2, b = -1/2 , c = 1,
Тоді для нейтрального струму одержуємо
Уведемо позначення
Тепер нейтральні векторні поля зв'язані між собою формулами
При цьому e = gWsinи. Остаточно слабкий нейтральний струм у секторі лептонів запишеться у вигляді
Вимірюючи на досвіді співвідношення між внесками векторних і аксіально-векторних струмів у процесах, що йдуть через нейтральні слабкі струми, наприклад, у процесі пружного нейтрино на електронах нм + е-е- → нм + е-е-,
або в процесі глубоко-неупругого розсіювання нейтрино на нуклоні нм + N → нм + X де X - адрони в кінцевому стані,
можна визначити експериментальне значення кута Вайнберга: sin2
W 0.230+0.003. Електромагнітний струм у секторі лептонів ee- має правильний виглядОтже, слабка й електромагнітна взаємодії об'єднані в єдине електрослабку взаємодію в досить простої моделі для лептонів
ee-. Вона негайно узагальнюється на весь лептонний і кварковий сектори. Перейти від феноменологичної моделі до теорії електрослабких взаємодій виявляється можливим у рамках теорії каліброваних полів.У фізиці елементарних часток електрослабка взаємодія є загальним описом двох із чотирьох фундаментальних взаємодій: слабкої взаємодії й електромагнітної взаємодії. Хоча ці дві взаємодії дуже різняться на звичайних низьких енергіях, у теорії вони представляються як два різних прояви однієї взаємодії. При енергіях, вище енергії об'єднання (порядку 102 ГеВ), вони з'єднуються в єдину електрослабку взаємодію.
Теорія електрослабої взаємодії являє собою створену наприкінці 60-х років 20-го століття С. Вайнбергом, Ш. Глешоу, А. Саламом єдину (об'єднану) теорію слабкої й електромагнітної взаємодій кварків і лептонів, здійснюваних за допомогою обміну чотирма частками - безмасовими фотонами (електромагнітна взаємодія) і важкими проміжними векторними бозонами (слабка взаємодія).
Математично об'єднання здійснюється за допомогою каліброваної групи SU(2) × U(1). Відповідні калібровані бозони - фотон (електромагнітна взаємодія) і W і Z бозони (слабка взаємодія). У Стандартній моделі калібровані бозони слабкої взаємодії одержують масу через спонтанне порушення електрослабкої симетрії від SU(2) × U(1)Y до U(1)em, викликаного механізмом Хиггса . Нижні індекси використовуються, щоб показати, що існують різні варіанти U(1); генератор U(1)em дається вираженням Q = Y/2 + I3, де Y - генератор U(1)Y (названий гіперзаряд), а I3 - один з генераторів SU(2) (компонент ізоспина). Розходження між електромагнетизмом і слабкою взаємодією з'являється внаслідок (нетривіальної) лінійної комбінації Y і I3, що зникає для бозона Хиггса (цей власний стан як Y, так і I3, так що можна взяти коефіцієнти −I3 і Y): U(1)em визначається як група, генерируєма саме цією лінійною комбінацією й не піддається спонтанному порушенню симетрії, оскільки не взаємодіє з бозоном Хиггса.
За внесок в об'єднання слабкої й електромагнітної взаємодій елементарних часток Шелдону Глешоу, Стивену Вайнбергу й Абдусу Саламу була присуджена Нобелівська премія по фізиці в 1979. Існування електрослабких взаємодій було експериментально встановлене у дві стадії: спочатку були відкриті нейтральні струми в спільному експерименті Гаргамелла по розсіюванню нейтрино в 1973 р., а потім спільні експерименти UA1 і UA2 в 1983 р. довели існування W і Z каліброваних бозонів за допомогою протон-антипротонних зіткнень на прискорювачі SPS (Super Proton Synchrotron, протонний суперсинхротрон).
3. «ТЕОРІЯ ВСЬОГО»
Теорія всього(англ. Theory of everything, TOE) - гіпотетична об'єднана фізико-математична теорія, що описує всієї відомої фундаментальної взаємодії. Спочатку даний термін використовувався в іронічному ключі для позначення різноманітних узагальнених теорій. Згодом термін закріпився в квантової фізики для позначення теорії, яка б об'єднала всі чотири фундаментальні взаємодії в природі. У науковій літературі замість терміна «теорія всього» використовується термін «єдина теорія поля», проте варто мати на увазі, що теорія всього може бути побудована й без використання полів, незважаючи на те, що науковий статус таких теорій може бути спірним.
Протягом двадцятого століття була запропонована безліч «теорій усього», але жодна з них не змогла пройти експериментальну перевірку, або існують значні утруднення в організації експериментальної перевірки для деяких з кандидатів. Основна проблема побудови наукової «теорії всього» полягає в тому, що квантова механіка й загальна теорія відносності (ВІД) мають різні області застосування. Квантова механіка в основному використовується для опису мікросвіту, а загальна теорія відносності застосовна до макросвіту. СТВ (Спеціальна теорія відносності) описує явища при більших швидкостях, а ВІД є узагальненням ньютоновської теорії гравітації, що поєднує її зі СТО й поширює на випадок більших відстаней і більших мас. Безпосереднє сполучення квантової механіки й спеціальної теорії відносності в єдиному формалізмі (квантової релятивістської теорії поля) приводить до проблеми - відсутності кінцевих результатів для величин, що перевіряються експериментально. Для рішення цієї проблеми використовується ідея перенормировки величин. Для деяких моделей механізм перенормировок дозволяє побудувати дуже добре працюючі теорії, але додавання гравітації (тобто включення в теорію ВІД як граничного випадку для малих полів і більших відстаней) приводить до розходження, які забрати поки не вдається. Хоча із цього зовсім не треба, що така теорія не може бути побудована.