Смекни!
smekni.com

Расчет рабочего режима электрической сети (стр. 1 из 4)

СОДЕРЖАНИЕ

ЗАДАНИЕ НА РГ

1. составление схемы замещения сети

1.1Расчет параметров схемы замещения ЛЭП

1.2Определение параметров схемы замещения подстанции

1.3Составление схемы замещения сети

2. Расчет рабочего режима сети

2.1 Нулевая итерация

2.2 Первая итерация

3. Расчет рабочего режима сети с учетом конденсаторной батареи

3.1 Нулевая итерация

3.2 Первая итерация

ЗАКлючение

Библиографический список


ЗАДАНИЕ НА РГЗ

От шин районной подстанции 1 по двухпроводной воздушной ЛЭП осуществляется электроснабжение понизительной подстанции 2, на которой установлено два одинаковых трехобмоточных трансформатора Тр 1 и Тр 2. Схема описанной электрической сети представлена на рис. 1. Исходные данные к расчету рабочего режима сети: действующее значение напряжения на шинах узловой подстанции 1 – U1; длина ЛЭП от подстанции 1 до подстанции 2 – L; марка провода ЛЭП; расположение проводов на опорах; среднее расстояние между проводами фаз – D; число проводов в фазе – n; шаг расщепления – аср; тип трансформатора; номинальные напряжения обмоток высшего, среднего и низшего напряжения – UВН/UСН/UНН; нагрузки трансформаторов на сторонах среднего и низшего напряжений соответственно

и
) приведены в табл.1.

Таблица 1 – Исходные данные к курсовой работе

Номер варианта Параметры электрической сети
U1,кВ L,км Марка провода Расположениепроводов D,м n а,мм Тип трансформатора UВН/UСН/UНН,кВ
,МВ×А
,МВ×А
32 39 25 АС - 95/16 В вершинах треугольника 4,0 1 - ТМТН-10000/35 36,75/10,5/6,3 6+j2 7+j1

Рисунок 1 – Схема электрической сети


1. составление схемы замещения сети

1.1 Расчет параметров схемы замещения ЛЭП

Из курса “ТОЭ” известно, что любая длинная линия является линией с распределёнными параметрами, которую можно представить в виде множества соединённых в цепочку элементарных участков, каждый из которых может быть представлен в виде “П” – образной схемы замещения, с одинаковыми значениями погонных параметров ZП и YП, где: ZП = RП + jXП – продольное погонное сопротивление линии; YП = gП +jbП – поперечная погонная проводимость линии. Так как в нашем случае используется относительно короткая ЛЭП (L < 300 км), то распределенностью параметров можно пренебречь и считать их сосредоточенными.

Рассмотрим сначала однопроводную ЛЭП и рассчитаем для нее параметры схемы замещения. Необходимые размеры и сечения провода приведены в табл. 1.1.

Таблица 1.1 – Расчётные данные сталеалюминевого провода АС - 95/16

Sном,мм2 (алюминий / сталь) Сечение проводов, мм2 Диаметр провода,мм
Алюминиевых Стальных
95/16 95,4 15,9 13,5

Определяется активное сопротивление линии:

(1.1)

где L– длина ЛЭП, км; F– сечение активной части провода, мм2; γ – удельная проводимость алюминия.

Согласно (1.1):

Определяется индуктивное сопротивление линии:

(1.2)

где

- радиус провода, мм;
- среднее геометрическое расстояние между осями соседних фаз, мм;
- относительная магнитная проницаемость проводника (алюминия);L – длина ЛЭП, км.

Определяется среднее геометрическое расстояние между осями соседних фаз:

мм. (1.3)

Согласно (1.2):

Ом.

Определяется активная проводимость линии:

(1.4)

где ΔРкор – потери активной мощности на корону, кВт; Uн – номинальное напряжение на ЛЭП, кВ.

Определяются потери активной мощности на корону:

(1.5)

где

- коэффициент, учитывающий атмосферное давление; Uф – фазное напряжение ЛЭП, кВ; Uф.кор. - фазное напряжение, при котором появляется корона, кВ.

Определяется фазное напряжение ЛЭП:

Определяется фазное напряжение, при котором появляется корона:

(1.6)

где

- коэффициент, учитывающий состояние поверхности провода;
- коэффициент, учитывающий состояние погоды;

Согласно (1.6):

Фазное напряжение, при котором возникает корона значительно выше действительного (625,524 > 20,2073), поэтому в данной ЛЭП коронирования не будет и соответственно потерь, связанных с ним тоже. Таким образом, активная проводимость в схеме замещения ЛЭП будет отсутствовать.

Определяется реактивная проводимость линии:

(1.7)

где К = 1,05 - коэффициент, учитывающий влияние земли и грозозащитных тросов.

Согласно (1.7):

В нашем задании ЛЭП – двухпроводная, оба участка исследуемой ЛЭП имеют одинаковые параметры и соединены параллельно. То есть предоставляется возможность упростить схему замещения. При этом значения продольных параметров схемы замещения линии уменьшаются вдвое, а значения поперечных увеличиваются в такое же количество раз. Таким образом, полная схема замещения ЛЭП, приведённая на рис. 1.1, соединяющей подстанцию 1 с подстанцией 2 будет иметь следующие значения параметров:

Рисунок 1.1 – Схема замещения ЛЭП

1.2 Определение параметров схемы замещения подстанции 2

Подстанция 2 состоит из двух трансформаторов ТМТН-10000/35, соответствующие обмотки которых соединены параллельно между собой. Рассчитаем параметры схемы замещения одного трансформатора, а затем скорректируем полученные значения для случая параллельного соединения трансформаторов аналогично тому, как поступили с ЛЭП.

Каталожные данные трансформатора типа ТМТН-10000/35 приведены в табл. 1.2.

Таблица 1.2 - Каталожные данные трансформатора типа ТМТН-10000/35

Мощность SНОМ.ТР, МВ×А Тип Пределырегулирования напряжения, % КАТАЛОЖНЫЕ ДАННЫЕ
UНОМ, кВ UК, % К,кВт Х,кВт IХ,%`
ВН СН НН В-С В-Н С-Н
10 ТМТН-10000/35 ±8´1,5 36,75 10,5 6,3 16,5 8 7,2 75 18 0,85

Активные сопротивления обмоток (здесь и далее имеются ввиду приведенные значения) трансформатора определяются по формуле:

(1.8)

где

- потери короткого замыкания трансформатора, кВт;
- номинальное напряжение обмотки ВН трансформатора, кВ;
- номинальная мощность трансформатора, кВА.

Активные сопротивления обмоток равны между собой и равны

.

Согласно (1.8):

Определяется индуктивные сопротивления обмоток трансформатора.

Сопротивление обмотки ВН:

(1.9)

где

- напряжение короткого замыкания обмотки ВН, %;
- номинальное напряжение обмотки ВН трансформатора, кВ;
- номинальная мощность трансформатора, кВА.