Смекни!
smekni.com

Выбор и расчет электродвигателя (стр. 3 из 4)

Очерчиваем внутреннюю стенку корпуса:

а) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А = δ =10 мм;

б) принимаем зазор между торцом ступицы шестерни и внутренней стенкой корпуса А1 = 10 мм;

в) принимаем зазор между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А2 = 10 мм.

Предварительно намечаем радиальные шарикоподшипники легкой серии по ГОСТ 8338-75. Габариты подшипников выбираем из таблицы П3. [1] по диаметру вала в месте посадки подшипника: dп1 = 30 мм; dп2 = 35 мм.

Условное обозначение подшибника d D B Грузоподъёмность, кН
Размеры, мм
206 30 62 16 19,5 10
207 35 72 17 25,5 13,7

Решаем вопрос смазки подшипников. Принимаем для подшипников пластичную смазку. Для предотвращения вытекания смазки внутрь и вымывания пластичной смазки жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер У=10 мм; принимаем У = 10 мм.

Находим расстояние от середины шестерни до точек приложения реакции подшипников к валам:

на ведущем валу

мм;

на ведомом валу

мм;

тоесть l1 = l2 = 54 мм.

Из расчета цепной передачи определяем расстояние от точки приложения натяжения цепи к валу, до точки приложения реакции ближайшего из подшипника ведомого вала.

Длина гнезда подшибника

мм,

S = 10 мм – толщина врезной крышки;

Определяем расстояние от точки приложения натяжения цепи к валу до реакции ближайшего подшибника ведомого вала

мм

8. Проверка долговечности подшипников

8.1 Ведущий вал

Силы, действующие в зацеплении:

Ft = 500 H; Fr = 182 H, из первого этапа компоновки l1 = 46 мм.

Расчетная схема вала

Определяем реакции опор:

а) в горизонтальной плоскости

H;

б) в вертикальной плоскости

Н.

Определяем изгибающие моменты и строим эпюры:

а) в горизонтальной плоскости

Mx1 = 0; Mx2 = 0; Mcx = Rx1· l1 = 440· 54 = 23760 H·мм = 23,76 Н·м;

б) в вертикальной плоскости

My1 = 0; My2 = 0; Mcy = Ry1· l1 = 160·54 = 8640 H·мм = 8,64 Н·м.

Определяем суммарные реакции опор

Так как осевая нагрузка в зацеплении отсутствует, то коэффициент осевой нагрузки

y = 0, а радиальной x = 1,0.

Эквивалентную нагрузку определяем по формуле

Рэ = x· v· R· Кб · Кт

при t < 100°C, температурный коэффициент Кт = 1,0 (табл. 9.20 [1] );

V = 1,0 – коэффициент при вращении внутреннего кольца подшипника.

Кб =1.2 –коэфициент безопасности для редукторов

Тогда Рэ = 1,0 · 1,0 · 470 · 1,2 · 1,0 = 570 H = 0,57кН.

Расчетная долговечность, часов

часов.

8.2 Ведомый вал

Силы действующие в зацеплении: Ft = 880 H; Fr = 320 H; Fц = 1398 H. Крутящий момент на валу Т2 = 126 Н·м. n2 = 238об/мин

Из первого этапа компоновки: l2 = 54 мм; l3 = 70 мм.

Расчетная схема вала

Составляющие действующие на вал от натяжения цепи.

Fцx = Fцy = Fц · sinγ = 1398 · sin 45° = 1398 · 0,7071 = 988 Н.

Определяем реакции опор:

а) в горизонтальной плоскости

åm3 = 0; Fцx· (2l2 + l3) – Ft· l2 – Rx4 · 2l2 = 0;

Н;

åm4 = 0; – Rx3· 2l2 + Ft· l2 + Fцx· l3 = 0

H.

Проверка:

åxi = 0; Rx3 + Fцx – Ft – Rx4 = 1126 + 988 – 880 – 1234= 0.

Следовательно реакции определены верно.

б) в вертикальной плоскости

åm3 = 0; Fr·l2 + Fцy· (2l2 + l3) – Ry4· 2l2 = 0

H;

åm4 = 0; – Ry3· 2l 2 – Fr· l 2 + Fцy·l 3 = 0;

Н.

Проверка:

åyi = 0; Ry3 + Fr + Fцy – Ry4 = 480 + 320+988 – 1788 = 0.

Следовательно реакции определены верно.

Определяем изгибающие моменты и строим эпюры:

а) в горизонтальной плоскости

Мx3 = 0; Mbx= 0;

Max = - Rx3· l2 = - 1126· 54 = - 60800 H·мм = -60,8 Н·м;

M = - Fцx· l3 = - 988 ·70 = - 69160 H·мм = - 69,16 Н·м;

б) в вертикальной плоскости

M3y = 0,Mby= 0;

May = Ry3· l2 = 480 · 54 = 25920 H·мм = 25,92 Н·м;

M4y = - Fцy· l3 = - 998 · 70 = - 69160 H·мм = - 69,16 Н·м.

Определяем суммарные реакции опор

Н;

Н.

Эквивалентную нагрузку определяем для более нагруженной опоры “4”, так как

R4 > R3.

Значения коэффициентов принимаем те же, что и для ведущего вала:

x = 1,0,v = 1,0, Кт = 1,0, Кб = 1,2. У = 0;

Определяем эквивалентную нагрузку

Рэ4 = x· v· R4 · Кт · Кб = 1,0 · 1,0 · 2,18 · 1,2 · 1,0 = 2,62 кН.

Расчетная долговечность, часов


часов.

Подшипники ведущего вала № 205 имеют ресурс Lh = 69·104 ч, а подшипники ведомого вала № 206 имеют ресурс Lh = 64,52·103 часов.

9. Проверка прочности шпоночных соединений

Шпонки призматические со скругленными торцами. Размеры сечений шпонок, пазов и длины по ГОСТ 23360 – 78. Материал шпонок сталь 45, нормализованная.

Напряжения смятия и условие прочности

;

допускаемые напряжения при стальной ступице [

см] = 120 МПа, а при чугунной ступице [Gсм] = 70 МПа.

9.1 Ведущий вал

Крутящий момент на валу Т1 = 31,7 Н·м.

Шпонка на выходном конце вала для соединения муфтой с валом электродвигателя. По таблице 8.9 [1] при dв1 = 18 мм находим b×h = 8×7 мм; t1 = 4 мм; длина шпонки

l = 40 мм, при длине ступицы полумуфты lст = 45 мм (Таблица 11.5 [1]).

Тогда

9.2 Ведомый вал

Крутящий момент на валу Т2 = 126,8 Н·м.

Шпонка под зубчатым колесом dк2 = 40 мм. По табл. 8.9 [1] принимаем b×h = 12×8 мм; t1 = 5 мм; длина шпонки l = 45 мм . При длине ступицы колеса lст3 = 50 мм.

Тогда

Шпонка на выходном конце вала, под ведущую звёздочку цепной передачи,

dв2 = 32мм; По таблице8.9[1] b×h = 10×8; t1 = 5мм; l = 50мм; при длине ступицы звёздочки lст = 55мм

Звёздочка литая из стали 45Л

Тогда

Вывод: Условие

см£ [
см] выполнено.

10. Уточненный расчет валов

Будем выполнять расчет для предположительно опасных сечений. Прочность соблюдена при S³ [S].

10.1 Ведущий вал

Материал вала сталь 45, улучшенная так как вал изготовлен за одно целое с шестерней. По таблице 3.3 [1] при диаметре заготовки до 90 мм (в нашем случае da1 = 78 мм) принимаем

в = 780 МПа.

Предел выносливости при симметричном цикле изгиба

= 0,43·

в = 0,43 · 780 = 335 МПа.

Предел выносливости при симметричном цикле касательных напряжений

t-1 = 0,58·

= 0,58 · 335 = 193 МПа.

Сечение А-А .

Это сечение выходного конца вала dв1 = 24 мм под муфту, для соединения вала двигателя с валом редуктора. Концентрацию напряжений вызывает наличие шпоночной канавки. По таблице 8.9 [1] при dв1 = 24 мм находим b = 8 мм; t1 = 4 мм. Это сечение рассчитываем на кручение. Коэффициент запаса прочности сечения

.

Момент сопротивления кручению

мм3.

Крутящий момент на валу Т1 = 12,5 Н·м.

Амплитуда и среднее напряжение цикла касательных напряжений