Федеральное агентство по образованию
Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"
Кафедра Электронного приборостроения
по дисциплине:
Измерение и испытание в СВЧ диапазоне
на тему
"Измерение СВЧ мощности"
Выполнил:
Студент Лебедев Р.Ю.
Группа 5062
Проверил:
Беневоленский Д. М.
Санкт-Петербург
2010
Содержание
Введение
1. Способы измерения СВЧ мощности
2. Методы измерения СВЧ мощности
2.1 Измерение поглощаемой мощности
2.2 Измерение проходящей мощности
Заключение
Список литературы
Введение
Мощность в общем виде есть физическая величина, которая определяется работой, производимой в единицу времени. Единица мощности ватт (Вт) соответствует мощности, при которой за одну секунду выполняется работа в один джоуль (Дж). На постоянном токе и переменном токе низкой частоты непосредственное измерение мощности зачастую заменяется измерением действующего значения электрического напряжения на нагрузке U, действующего значения тока, протекающего через нагрузку, угла сдвига фаз между током и напряжения P=UIcosφ. В СВЧ диапазоне измерение напряжения и тока становится затруднительным. Соизмеримость размеров входных цепей измерительных устройств с длинной волны является одной из причин неоднозначности измерения напряжения и тока. Измерения сопровождаются значительными частотными погрешностями. Следует добавить, что измерение напряжения и тока в волноводных трактах при некоторых типах волн, теряет практический смысл, так как продольная составляющая в проводнике отсутствует, а реальная разность потенциалов между концами любого диаметра сечения волновода равна нулю. В связи со сказанным на частотах начиная с десятков мегагерц предпочтительным и более точным становиться непосредственное измерение мощности, а на частотах свыше 10000 МГц – это единственный вид измерения, однозначно характеризующий интенсивность электромагнитного колебания. Для непосредственного измерения мощности СВЧ применяют методы, основанные на фундаментальных физических законах, включающих метод прямого измерения основных величин: массы, длинны и времени.
При этом различают два основных случая:
- измерение мощности, проходящей от источника в данную нагрузку;
- измерение мощности, которую источник может отдать в согласованную нагрузку (поглощаемой мощности).
1. Способы измерения СВЧ мощности
Измерение мощности источника электромагнитных колебаний (генератора).
Согласно общепринятому определению, под мощностью генератора понимают мощность, отдаваемую им в согласованную нагрузку (рис.1).В этом случае измеряемая мощность полностью рассеивается на некотором измерительном эквиваленте нагрузки с последующим измерением мощности теплового процесса. Такие измерители мощности называются ваттметрами поглощающего типа. Так как нагрузка должна полностью поглощать измеряемую мощность, то использование прибора возможно лишь при отключенном потребителе. Результат измерения будет наиболее точным, если входное сопротивление измерительного прибора полностью согласовано с выходным сопротивлением исследуемого генератора или волновым сопротивлением линии передачи, т. е. Zг = Z н.
Измерение электрической мощности, выделяемой в нагрузке, полное сопротивление которой может быть произвольно.
В этом случае между генератором и нагрузкой включается специальное устройство, преобразующее в другую форму лишь незначительную часть передаваемой по линия энергии и не нарушающее процесса ее передачи (Рис.2)
Принципиальное отличие этих двух групп заключается в том, что приемные преобразователи в первом случае рассеивают всю подводимую СВЧ мощность, а во втором, как правило, потребляют незначительную часть мощности, проходящей в нагрузку.
Измерительное устройство
Как правило, оно включает узлы и блоки, преобразующие выходной сигнал приемного преобразователя в сигнал, удобный для индикации и подачи на отсчетное устройство, калибратор (при необходимости) и другие вспомогательные узлы. В зависимости от типа приемного преобразователя, измерительным устройством может служить самобалансирующийся мост или мост с ручной балансировкой (для биологический и термисторных ваттметров), усилитель постоянного или переменного тока, импульсный усилитель, механическая измерительная система и т.д.
Основные требования, предъявляемые к измерительному:
- постоянство коэффициента передачи в рабочих условиях эксплуатации (линейная амплитудная характеристика);
- малая инерционность;
- малая нестабильности показаний (в том числе дрейф нуля);
- удобное и (или) автоматизированное управление.
Отсчетное устройство
Индуцирует мощность, рассеиваемую преобразователем, в аналоговом или цифровом виде. Обычно отсчетное устройство совмещают с измерительным.
2. Методы измерения СВЧ мощности
А. Измерение поглощаемой мощности
Измерение поглощаемой мощности является наиболее распространенным видом измерения СВЧ мощности. Приемные преобразователи ваттметров поглощаемой мощности, являющиеся эквивалентом согласованной нагрузки, включат на конце передающей линии. В зависимости от вида применяемых преобразователей различают следующие методы измерений: тепловые (калориметрический, болометрический, термоэлектрический); метод вольтметра; метод с использованием частотно – избирательных ферритовых элементов.
Измерение мощности с помощью резистивных термочувствительных элементов (терморезисторов)
Наиболее распространенным методом измерения малых мощностей, на котором построены промышленные ваттметры, является метод измерения сопротивления терморезистора при рассеянии в нем электромагнитной энергии. В качестве резистивных термочувствительных элементов используются болометры, сопротивление которых растет с повышением температуры (положительный температурный коэффициент сопротивления), и термисторы, сопротивление которых с ростом температуры падает.
Основными преимуществами термисторов по сравнению с болометрами являются их более высокая чувствительность и большая устойчивость к перегрузкам.
Термистором называют терморезистор, изготовленный из специального полупроводникового материала, обладающего большим отрицательным температурным коэффициентом сопротивления, т.е. температурная характеристика термистора — отрицательная. Применяют два типа термисторов: стержневой и бусинковый. Стержневые термисторы обладают более высокой электрической прочностью и имеют относительно меньшее реактивное сопротивление. Термисторы бусинкового типа при прочих равных условиях имеют меньшую поверхность охлаждения и поэтому обладают большей чувствительностью. Чувствительность термистора высокая— от 10 до 100 Ом/мВт. Для получения высокой чувствительности рабочую точку термистоpa выбирают на участке с максимальной крутизной характеристики.
Болометр — проволочный или пленочный терморезистор с положительной температурной характеристикой, помещенный в стеклянный (вакуумный или наполненный инертным газом) баллон. Для увеличения чувствительности нить выполнена из материала с высоким температурным коэффициентом сопротивления. Болометры менее чувствительны, чем терморезисторы, но имеют более стабильные, не зависящие от температуры окружающей среды характеристики.
Термистор или болометр помещают внутрь измерительной головки, состоящей из отрезка волновода или коаксиальной линии. Изменение сопротивления терморезистора при рассеянии в нем электромагнитной энергии измеряется обычно с помощью мостовых схем.
Промышленные терморезисторные ваттметры имеют общую абсолютную погрешность порядка 4...10 %. Погрешности измерения таких ваттметров определяются в основном степенью согласованности нагрузки и качеством измерительной головки. Существенным недостатком термисторных и болометрических ваттметров является ограничение максимального значения измеряемой мощности . Практически стандартные термисторы способны выдержать без разрушения мощность, не превосходящую нескольких десятков милливатт.
Измерение мощности термопарами
Данный метод измерения основан на регистрации значения термоЭДС, возникающей при нагревании термопары энергией СВЧ. Структурная схема ваттметра состоит из приемного термопреобразователя и измерительной части. Основным элементом преобразователя является блок высокочастотных дифференциальных термопар, одновременно выполняющих функции согласованной нагрузки и дифференциального термометра. В СВЧ-диапазоне чаще применяют термопары в виде тонких металлических пленок, напыленных на диэлектрическую подложку.
Основным элементом измерительной части прибора является вольтметр постоянного тока с цифровым дисплеем.
К преимуществам таких ваттметров следует отнести малую зависимость результатов измерения от колебаний температуры окружающей среды и малое время подготовки прибора к работе. Недостатки ваттметров: ограниченный верхний уровень динамического диапазона и недостаточная устойчивость к перегрузкам, ограничивающая допустимое значение средней мощности при измерении импульсных сигналов. Практически стандартные термопары способны выдерживать без разрушения мощность, не превышающую 50... 75 мВт. Уровень измеряемой мощности может быть несколько увеличен, если перед термисторной, болометрической или термопарной камерой поместить калиброванный аттенюатор.
Калориметрический метод измерения мощности
Калориметрический метод измерения мощности отличается высокой точностью, является универсальным и используется во всем радиотехническом диапазоне частот, как для малых, так и для больших мощностей. Meтод основан на преобразовании энергии электромагнитных колебаний, поглощаемых согласованной нагрузкой, в тепловую. Поглощение энергии поглотителем, составляющим основной элемент прибора, можно зарегистрировать либо непосредственно по изменению его температуры, либо косвенно как изменение объема, давления или других характеристик.