Современная теория классифицирует примеси в зависимости от их распределения на расплавленные и замороженные. Примеси называют расплавленными, если они находятся в термодинамическом равновесии с исходным веществом. Примеси называют замороженными, если их можно рассматривать как фиксированные в некоторых положениях с распределением, обусловленным способом их внедрения в исходное вещество.
Рассмотрим влияние примесей на критическое поведение. Пусть в систему, находящуюся вблизи критической точки, ввели несколько примесей, включив тем самым малое возмущение. Отклик системы на это возмущение отражается на поведении восприимчивости и корреляционных функций. Вблизи критической точки некоторые из этих величин велики и представляют собой сингулярные функции температуры. Следовательно, малое количество примесей может привести к большим эффектам вблизи критической точки, тем самым изменяя критическое поведение системы. Корреляционная длина, описывающая упорядоченность спинов, начинает зависеть от нового параметра - среднего расстояния между примесями, она как бы рассеивается на дефектах. В результате фазовый переход 2-го рода размывается.
Узнать, влияет ли беспорядок на критическое поведение, помогает критерий Харриса. Так, в случае беспорядка с короткой пространственной корреляцией критическое поведение изменяется, если соответствующий чистой системе критический индекс αpure, характеризующий поведение теплоемкости, не отрицателен, т.е. αpure ≥ 0. Этот критерий выполняется только для изинговских систем, с одной спиновой степенью свободы. Точечные дефекты не оказывают влияния на критическое поведение многокомпонентных систем.
В случае беспорядка с квазидальней пространственной корреляцией, задаваемой корреляционной функцией g (x) ~ |x|-a, справедлив расширенный критерий Харриса - беспорядок влияет, если выполнено условие:
2/a > ν pure.
Когда атомы примеси образуют линейные дефекты, параметр корреляции дефектов a=2. В результате, для систем с линейными дефектами этот критерий выполняется для многокомпонентных систем - XY-модели и модели Гейзенберга. Следовательно, для определения характеристик критического поведения трехмерной модели Гейзенберга с линейными дефектами требуются дополнительные исследования.
В данной работе рассматривалась система с гамильтонианом вида:
где сумма берется по всем ближайшим соседям. Спины имеют три степени свободы.
Рассматривалась простая кубическая решетка линейных размеров L с периодичными граничными условиями.
При моделировании мы пользовались следующим методом, позволяющим создавать систему с дальнодействующими корреляциями дефектов: из заполненной трехмерной решетки "вычеркиваются" линии, параллельные осям координат, до достижения заданной концентрации примесей p. Чтобы кристалл был изотропен число вычеркнутых линий в каждом направлении равно. Кроме того налагается условие непересекаемости этих линий, что позволяет гарантировать существование в системе единого протекающего спинового кластера (при концентрации спинов (1-p) >pc выше порога спиновой перколяции). Это в свою очередь приводит к удалению "шума" от спинов кластеров конечного размера не дающих вклада в магнитные характеристики кристалла.
Традиционное моделирование систем взаимодействующих частиц методом Монте-Карло [4] для изучения их критического поведения наталкивается на трудности [5], связанные в основном с явлением критического замедления, потому что время корреляции, как и время релаксации, ведут себя
, где . Т.е. в окрестности критической точки времена релаксации и корреляции возрастают, что приводит к существенному увеличению машинного времени, необходимого на расчет интересующих нас величин.Поэтому моделирование системы проводилось в два этапа. На первом этапе использовался кластерный алгоритм Вольфа, для определения критической температуры, а затем в ее вблизи исследовалась коротковременная динамика системы.
В работе использовался модифицированный для трехмерной системы кластерный алгоритм Вульфа [6].
1) Выбирается случайный единичный вектор
2) Случайным образом выбираются координаты центрального спина
3) Выбранный спин зеркально отражается в плоскости перпендикулярной направлению
:4) Рассматриваются все соседи данного спина. Спин считается сонаправленным, если он лежат по одну сторону от плоскости перпендикулярной направлению
с вектором . Т.е. если5) Такой спин переворачивается (включается в кластер) с вероятностью
.6) Если спин перевернут, то аналогичным образом рассматриваются его соседи. Иначе переходим к следующему.
7) На один шаг моделирования может приходиться несколько переворотов кластера.
Алгоритм Вольфа позволяет значительно уменьшить эффекты критического замедления времени релаксации системы.
Для нахождения критической температуры в данной работе рассматривались кумулянты Биндера четвертого порядка. Выражение для кумулянта можно представить в виде:
Где скобки <…> означают статистическое усреднение, а скобки […] - усреднение по различным примесным конфигурациям. Кумулянт U (L,T) имеет важную для описания поведения конечных систем скейлинговую форму:
.Кумулянт определен так, что 0 £ U £ 1. При этом для температур выше Tc U (L,T) ® 0 в пределе L ®¥. Данная скейлинговая зависимость кумулянта позволяет определить критическую температуру Tc (L=¥) для бесконечной системы через координату точки пересечения кривых, задающих температурную зависимость U (L,T) для различных L. Более того, легко показать, что в критической области при T® Tc
и, следовательно, по максимальному наклону кумулянтов вблизи точки их пересечения при L®¥ можно определить значение критического индекса n, характеризующего температурную расходимость корреляционной длины при T ® Tc.
Применение кумулянтов позволяет хорошо тестировать тип фазового перехода в системе. Так, в случае фазовых переходов второго рода кривые температурной зависимости кумулянтов имеют ярко выраженную зависимость от L и некоторую область (треугольник) пересечения, близкую к точке. В случае фазового перехода первого рода кривые кумулянтов имеют специфический вид без взаимного пересечения, практически отсутствует их зависимость от размера моделируемой системы, а кумулянты в некоторой области температур принимают отрицательные значения.
Традиционно полагалось, что универсальное поведение существует только в равновесии. Однако недавние исследования в критической динамике для многих статических моделей показали, что универсальность также появляется в пределах микроскопического масштаба времени
. Исследование метода коротковременной динамики не только показало существование универсального динамического поведения в пределах коротковременного периода, но также дало очень эффективный метод определения критических индексов [7]. Т.о. мы можем оценивать не только динамический критический показатель , но также и статические критические индексы и . Что более важно, результаты находятся в хорошем соответствии с полученными результатами традиционными методами, выполненными в равновесии.