Смекни!
smekni.com

Защита распределительных электрических сетей (стр. 2 из 4)

Защитная зона для одного троса в сечении перпендикулярном линии, имеет вид, подобный защитной зоне для одиночного стержневого молниеотвода. Ширина защитной зоны, исключающей прямое поражение проводов на уровне высоты их подвеса, определяется зависимостью:

(1.9)

Эта зависимость справедлива для высоты подвеса троса 30 м и ниже.

1.2 Определение высоты и места расположения молниеотвода

Стержневой молниеотвод предназначен для защиты здания подстанции шириной 10 м, длиной 85 м и высотой 17 м. Необходимо определить высоту и место расположения молниеотвода с учётом его допустимого приближения к объекту защиты, если в соответствии с руководящими указаниями по защите от перенапряжения ток молнии равен 50 кА, индуктивность молниеотвода – 1,5 мкГн и усреднённая крутизна фронта косоугольной волны тока - 34 кА/мксек, сопротивление заземления молниеотвода в импульсном режиме 50 Ом. Расчёт высоты молниеотвода производится так, чтобы с одной стороны его общая высота и радиус защиты на высоте объекта были наименьшими, а с другой стороны исключилась вероятность вторичных перекрытий с молниеотвода на объект.

Схема установки молниеотвода принимается в соответствии с рис. 1.4. По (1.7) определяется потенциал на молниеотводе в момент разряда на уровне высоты объекта:

Приняв рекомендованную допустимую импульсную напряжённость по воздуху Ев=500 кВ/м, определяется удаление молниеотвода от объекта из выражения (1.8):

Это же расстояние определяется по зависимости (1.8а):

То расстояние, которое оказалось большим, принимается за расчётное. Радиус защитной зоны определяется выражением:

(1.10)

Предположив, что высота молниеотвода будет больше 30 м, и используя зависимость (1.4), где р=5,5/

, получается:

Рисунок 1.4 – Схема установки молниеотвода

Решив уравнение, получим h = 78,469 м. Введя в расчётную формулу полученную величину, убедимся, что молниеотвод действительно защищает здание:

Исходя из полученных результатов, можно сделать предложение об установке не одного, а нескольких молниеотводов. Но для этого необходимо учесть экономические затраты на реализацию этого предложения и технические условия расположения необходимого количества молниеотводов. В итоге, сравнив расчёты, можно получить наиболее выгодный вариант.


1.3 Оценка амплитуды напряжения, действующего на гирлянду изоляторов при ударе молнии в провод

Молния поражает не защищенный тросом провод линии. Определить амплитуду напряжения, действующего на гирлянду изоляторов опоры, ближайшей к месту удара молнии. Волновое сопротивление канала молнии 250 Ом, волновое сопротивление провода с учётом импульсной короны 270 Ом. Статический ток молнии 90 кА.

Считая, что при ударе в провод действительный ток вдвое меньше статического, а эквивалентное волновое сопротивление двух проводов вдвое меньше сопротивления одного провода, определим амплитуду волны перенапряжения, распространяющейся по проводу в обе стороны и достигающей гирлянды:

(1.11)

где

- статический ток молнии, кА;
- волновое сопротивление провода с учё-

том импульсной короны, Ом.

Практически тот же результат можно получить, используя схему замещения по Петерсену, содержащую волновое сопротивление канала молнии и эквивалентное сопротивление двух лучей провода:


(1.12)

где

-волновое сопротивление молнии, Ом;
-напряжение падающей волны, кВ.

1.4 Определение величины и кратности индуктированного перенапряжения на проводах линии

Грозовой разряд произошел в столб телеграфной линии, расположенный на удалении 80 м от ЛЭП напряжением 110 кВ. Величина тока 290 кА. Определить величину индуктированного перенапряжения на проводах линии и кратность этого же перенаряжения, если высота подвеса проводов на опорах 16 м, а стрела провеса 5,5 м.

Определяется средняя высота подвеса проводов:

(1.13)

где

- высота подвеса проводов на опорах, м;
- стрела провеса проводов, м.

Определяется величина индуктированных напряжений:

(1.14)

где

- средняя высота подвеса проводов, м; S– удаление столба телеграфной линии от ЛЭП, м.

Так как индуктированное напряжение можно принять одинаковым для всех трёх проводов и учитывая, что оно действует на фазную изоляцию линии, определим кратность перенапряжения по отношению к фазному напряжению:

(1.15)

где

- величина индуктированных напряжений, кВ;
- напряжение линии, кВ.


2. РАСЧЁТ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

2.1 Параметры одиночных стержневых заземлителей

Основу заземляющего устройства составляют заземлители, т.е. металлические элементы, находящиеся непосредственно в грунте, и заземляющие провода (спуски), доступные для осмотра. Основными характеристиками заземляющего устройства является сопротивление растеканию тока промышленной частоты и сопротивление растеканию импульсных токов грозового разряда. Величина нормированного сопротивления растеканию тока промышленной частоты находится в пределах 0,5-25 Ом. Исследования показывают, что характер распределения тока в почве зависит от его частоты, удельного сопротивления грунта, линейных размеров и взаимного расположения заземлителей. При расчётах заземления используют формулы, определяющие величину сопротивления растеканию тока применительно к заданной форме заземлителя.

Электрический ток, растекаясь в почве в момент поражения установки грозовым разрядом при пробое изоляции токоведущих частей, создаёт вдоль своего пути падение напряжения, которому соответствуют определённые потенциалы на поверхности земли. При этом точки поверхности, расположенные на расстоянии 20 м и более от зпземлителя или места замыкания на землю, практически имеют нулевой потенциал.

Наивысшим или полным потенциалом будут обладать все точки, имеющие металлическую связь с заземлителем. Отношение полного потенциала к величине тока, протекающего через заземлитель, определяет собой сопротивление растекания тока данного заземления:

(2.1)

где

- полный потенциал, кВ;
- ток в заземлителе, кА.

Полный потенциал и характеристика распределения напряжения по радиусу от оси заземлителя определяют собой важные величины с точки зрения безопасности обслуживающего персонала:

- шаговое напряжение, под которым подразумевают ту наибольшую разность потенциалов, которую имеют ступни человека, оказавшегося на расстоянии 0,8 м друг от друга по радиусу от центра заземлителя;

- напряжение прикосновения, т.е. наибольшее напряжение между поверхностью заземлённого аппарата (к которому в момент разряда может прикасаться человек) и и точками поверхности земли на расстоянии 0,8 м.

Расчёт заземляющего устройства носит поверочный характер в том случае, когда схема заземления задана или носит чисто расчётный характер, когда по заданной величине нормированного сопротивления создаётся его схема. Во всех случаях при расчёте необходимой величиной является удельное сопротивление грунта, причём наиболее желательными являются результаты непосредственных измерений. Величины удельных сопротивлений подвержены сезонным изменениям, причём наибольшее влияние оказывают влажность, температура, степень промерзания, наличие солей.