В России режим заземления нейтрали через дугогасящий реактор применяется в основном в разветвленных кабельных сетях с большими емкостными токами. Кабельная изоляция в отличие от воздушной не является самовосстанавливающейся. То есть, однажды возникнув, повреждение не устранится, даже несмотря на практически полную компенсацию (отсутствие) тока в месте повреждения. Соответственно для кабельных сетей самоликвидация однофазных замыканий как положительное свойство режима заземления нейтрали через дугогасящий реактор не существует.
1.1.3 Нейтраль, заземленная через резистор (высокоомный или низкоомный)
Этот режим заземления используется в России очень редко, только в некоторых сетях собственных нужд блочных электростанций и сетях газоперекачивающих компрессорных станций. В то же время, если оценивать мировую практику, то резистивное заземление нейтрали – это наиболее широко применяемый способ.
Резистор в отечественных сетях 6-10 кВ может включаться так же, как и реактор, в нейтраль специального заземляющего трансформатора (рис. 1.3).
Рис.1. 3 Схема двухтрансформаторной подстанции с нейтралью, заземленной через резистор.
Возможны два варианта реализации резистивного заземления нейтрали: высокоомный или низкоомный.
При высокоомном заземлении нейтрали резистор выбирается таким образом, чтобы ток, создаваемый им в месте однофазного повреждения, был равен или больше емкостного тока сети. Как правило, суммарный ток в месте повреждения при высокоомном заземлении нейтрали не превышает 10 А. То есть высокоомным заземлением нейтрали является такое заземление, которое позволяет не отключать возникшее однофазное замыкание немедленно. Соответственно высокоомное заземление нейтрали может применяться только в сетях с малыми собственными емкостными токами до 5-7 А. В сетях с большими емкостными токами допустимо применение только низкоомного заземления нейтрали.
При низкоомном заземлении нейтрали используется резистор, создающий ток в пределах 10-2000 А. Величина тока, создаваемого резистором, выбирается исходя из нескольких конкретных условий: стойкость опор ВЛ, оболочек и экранов кабелей к протеканию такого тока однофазного замыкания; наличие в сети высоковольтных электродвигателей и генераторов; чувствительность релейной защиты.
Достоинствами резистивного заземления нейтрали являются:
отсутствие дуговых перенапряжений высокой кратности и многоместных повреждений в сети;
отсутствие необходимости в отключении первого однофазного замыкания на землю (только для высокоомного заземления нейтрали);
исключение феррорезонансных процессов и повреждений трансформаторов напряжения;
уменьшение вероятности поражения персонала и посторонних лиц при однофазном замыкании (только для низкоомного заземления и быстрого селективного отключения повреждения);
практически полное исключение возможности перехода однофазного замыкания в многофазное (только для низкоомного заземления и быстрого селективного отключения повреждения);
простое выполнение чувствительной и селективной релейной защиты от однофазных замыканий на землю, основанной на токовом принципе.
Недостатками резистивного режима заземления нейтрали являются:
увеличение тока в месте повреждения;
необходимость в отключении однофазных замыканий (только для низкоомного заземления);
ограничение на развитие сети (только для высокоомного заземления).
Отсутствие дуговых перенапряжений при однофазных замыканиях и возможность организации селективной релейной защиты являются неоспоримыми преимуществами режима резистивного заземления нейтрали. Именно эти преимущества способствовали широкому распространению такого режима заземления нейтрали в разных странах.
1.1.4 Глухозаземленная нейтраль
Как уже было сказано, в отечественных сетях 6-35 кВ не используется. Этот режим заземления нейтрали широко распространен в США, Канаде, Австралии, Великобритании и связанных с ними странах. Он находит применение в четырехпроводных воздушных сетях среднего напряжения 4-25 кВ. В качестве примера на рис.1.4 приведен участок сети 13,8 кВ в США. Воздушная линия на всем своем протяжении и ответвлениях снабжена четвертым нулевым проводом. Концепция построения сети заключается в том, чтобы максимально сократить протяженность низковольтных сетей напряжением 120 В. Каждый частный дом питается от собственного понижающего трансформатора 13,8/0,12 кВ, включенного на фазное напряжение. Основная воздушная линия делится на участки секционирующими аппаратами – реклоузерами. Трансформаторы каждого отдельного потребителя и ответвления от линии защищаются предохранителями. На отпайках от линии используются отделители, обеспечивающие отключение в бестоковую паузу.
Этот способ заземления нейтрали не используется в сетях, содержащих высоковольтные электродвигатели. Токи однофазного замыкания в этом случае достигают нескольких килоампер, что недопустимо с позиций повреждения статора электродвигателя (выплавление стали при однофазном замыкании).
Рис. 1.4 Схема воздушной четырехпроводной распределительной сети 4-25 кВ США.
Применение глухого заземления нейтрали в сетях среднего напряжения в России вряд ли необходимо и вероятно в обозримом будущем. Все отечественные линии 6-35 кВ трехпроводные, а трансформаторы потребителей трехфазные, то есть сам подход к построению сети существенно отличается от зарубежного. Указанный выше случай глухого заземления нейтрали в кабельной сети 35 кВ, питающей г. Кронштадт, является исключением. Такое решение было сознательно принято проектным институтом в связи с тем, что ток однофазного замыкания в этой сети составляет около 600 А. Компенсация в данном случае малоэффективна, а надежных высоковольтных низкоомных резисторов на момент реализации решения в России не существовало.
1.2 Характеристика процессов при замыканиях на землю в сети 35 кВ
Замыкания на линиях, однофазные и междуфазные, можно подразделить на дуговые и металлические. При дуговых замыканиях соединение токоведущих частей между собой или землей происходит через малое сопротивление дугового канала. Такие замыкания могут возникать вследствие воздействия грозовых или внутренних перенапряжений (при сильном загрязнении гирлянд, изоляторов), либо вследствие механических воздействий.
Рассмотрим возникновение перенапряжений в трехфазной сети на примере изолированной нейтрали. На рис. 5а приведена расчетная схема трехфазной сети. На этой схеме показаны фазные ЭДС ес, еь, еа, индуктивности и сопротивления фаз Lи R, а также емкости фаз на землю С и междуфазовые См.
Рис.1.5 Исходная (а) и преобразованная (б) схемы сети
с изолированной нейтралью источника при замыканиях одной из фаз на землю
Пусть на фазе А возникает однофазное замыкание через неустойчивую дугу. Тогда для расчета возникающих перенапряжений схему на рис. 1.5.а можно представить в виде схемы на рис. 1.5.б. После зажигания дуги на поврежденной фазе А емкости С и См неповрежденных фаз соединяются параллельно, как это видно из рис. 1.5.б и происходит перераспределение зарядов между емкостями. Перераспределение свободных зарядов на емкостях С и См приводит к снижению амплитуды свободных колебаний напряжения в соответствии с соотношением С/(С+ См). Примерные значения соотношения С/(С+ См) для линий электропередачи 35 составляют 0,744.
Значения перенапряжения при повторном зажигании дуги можно определить по формуле
(1.1)где Uн – начальное значение напряжения на неповрежденных фазах в момент повторного зажигания;
Uк – значение установившегося напряжения колебаний;
– коэффициент, учитывающий затухание высокочастотных колебаний, который принимается обычно равным 0,9.Если принять, что при перовом повторном зажигании в момент максимума напряжения поврежденной фазы в сети нет остаточных зарядов, то максимальное перенапряжение на поврежденной фазе, достигаемое в переходном процессе, будет равно:
(1.2)Кратковременные перенапряжения порядка 3Uф не опасны для нормальной изоляции при рабочих напряжениях до 35 кВ включительно. Однако длительные перенапряжения могут привести к тепловому пробою изоляции. Кроме того, на процесс развития перенапряжений в сетях часто действуют дополнительные факторы, повышающие кратность перенапряжений. Замечено, в частности, что при неустойчивых дугах на неповрежденных фазах часто срабатывают разрядники, имеющие пониженную кратность разрядного напряжения при рабочей частоте. Работа разрядников может привести к появлению перенапряжений, опасных для изоляции. Действительно, если происходит гашение дуги разрядником на неповрежденной фазе, а поврежденная фаза заземлена, то восстанавливающееся напряжение изменяется от нуля до 2Uл = 3,46Uф. Поэтому каждый раз, когда происходит срабатывание разрядников, на изоляцию здоровых фаз воздействует перенапряжение 3,46Uф.
При компенсации емкостных токов воздушные и кабельные сети могут длительно работать с замкнувшейся на землю фазой. В сети с изолированной нейтралью трансформаторов однофазное замыкание может существовать, если емкостной ток замыкания препятствует самопогасанию дуги в месте замыкания. При включении в нейтраль трансформатора реактора (рис.1.6) через место замыкания вместе с емкостным током проходит индуктивный ток, обусловленный индуктивностью реактора Lк.