На жаль, термомагнітні газоаналізатори здатні визначати вміст у сумішах лише парамагнітних складових. Переважна кількість газових домішок не має значної магнітної сприйнятливості і виявити її термомагнітними газоаналізаторами неможливо.
Вміст таких домішок визначають за допомогою термокондуктометричних газоаналізаторів, принцип дії яких полягає у використанні залежності величини теплопровідності газової суміші від вмісту складової, що має істотно більшу питому теплопровідність, порівняно з такою самою у інших складових суміші. Зазначимо, що коефіцієнти теплопровідності різних газів можуть суттєво відрізнятися між собою. Наприклад, такий коефіцієнт для хлору втроє менший ніж у повітря, а для водню у сім разів більший ніж у повітря.
Принципову схему термокондуктометричного газоаналізатора наведено на рис. 3. Газоаналізатор створено на основі неврівноваженого мосту, в схему якого введено дротяні резистори Rl, R2, R3, і R4, виконані з металу, що має значний температурний коефіцієнт електричного опору. Це можуть бути нікель, мідь, платина та інші метали, необхідно лише, щоб вони були хімічно стійкими стосовно контрольованої газової суміші. Кожний з названих резисторів встановлено у камері, яка зроблена у масивному металевому зливку, що забезпечує однакову температуру стінок в усіх камерах.
Рис. 3 Принципова схема термокондуктометричного газоаналізатора
Резистори R2і R4частіш за все містяться у камерах, заповнених повітрям, а резистори Rlі R3— у камерах, крізь котрі проходить газова суміш, що підлягає аналізові. Міст живиться від джерела Б через регульований резистор Rр, за допомогою якого заздалегідь встановлюють певну величину струму живлення, контрольовану міліамперметром. Реохорд Rу цій схемі забезпечує можливість встановлення нульового показання мілівольтметра — покажчика напруги розбалансування мосту до початку вимірювань, коли камери резисторів R1і R3заповнюють повітрям, як і камери резисторів R2і R4.
При проходженні ж крізь камери резисторів Rlі R2аналізованої газової суміші умови охолодження резисторів Rl, R3, і R2, R4 будуть різними, через що і температури нагріву вказаних пар резисторів відрізнятимуться. В результаті цього й величини опорів вказаних пар резисторів змінюються, що викликає розбалансування вимірювального мосту і появу відхилення стрілки мілівольтметра вздовж шкали, градуйованої у відсотках вмісту контрольованої складової у складі газової суміші.
Газову суміш, що надходить у камери, де розміщено резистори R1і R3, необхідно відфільтрувати від часток пилу, а то й від інших домішок, які можуть вносити похибки у вимірювання (наприклад, тих, що мають коефіцієнт теплопровідності, близький за величиною до такого у контрольованій складовій).
Крім того, необхідно забезпечити рівність температур повітря у камерах резисторів R2та R4 і температури газової суміші, що проходить крізь камери резисторів R1та R3Слід дбати також і про незмінність величини струму, що надходить до мосту від батареї Б.
Тут було розглянуто найпростішу схему термокондуктометричного газоаналізатора.
Реально ж на енергетичних підприємствах часто користуються газоаналізаторами, що створені на основі врівноважених автоматичних мостів. При цьому, звичайно, можна одержати дещо більшу точність вимірювань, але такі газоаналізатори значно дорожчі і складніші в обслуговуванні.
3. Вимірюванняконцентраціїрозчинів
розчин суміш концентрація речовина
На електричних станціях досить часто вимірюють концентрації окремих хімічних речовин у водяних розчинах.
Концентрації кислот, лугів та солей необхідно вимірювати для того, щоб забезпечити можливість підтримувати рівень величини концентрації розчинів у певних межах. Це необхідно для нормального протікання технологічних процесів. Для таких вимірювань найчастіше користуються кондуктометричними концентратомірами. Ці прилади визначають величину концентрації за величиною електропровідності (чи за оберненою їй величиною електричного опору) електродної чарунки, заповненої досліджуваним розчином.
Кондуктометричні концентратоміри можуть бути контактними, там, де електроди введено у схему вимірювання опору (частіше за все мостову) і мають безпосередній фізичний контакт з досліджуваною рідиною, чи безконтактними (де відсутній безпосередній контакт чутливої частини вимірювального устаткування з досліджуваною рідиною). Безконтактний метод вимірювання слід вважати більш прогресивним, бо при цьому унеможливлюється вплив стану поверхні вимірювальних електродів на результат вимірювань.
Кондуктометричні концентратоміри працюють виключно на змінному струмі, щоб уникнути похибок, пов'язаних з поляризацією вимірювальних електродів, яка завжди матиме місце при постійному струмі.
Користуватись кондуктометричними концентратомірами слід обачно, щоб уникнути появи грубих похибок, спричинених властивістю більшості розчинів мати однакові значення електричного опору (чи електричної провідності) чарунки при суттєво відмінних величинах концентрації. На рис. 4 наведено залежності питомої електропровідності γ водяних розчинів деяких речовин від величини їхньої концентрації С у цих розчинах.
Рис. 4. Залежності питомої електропровідності розчинів від концентрації (температура 20 °С)
Рис. 5 Схемаавтоматичногоконтактногокондуктоміра
Як видно, у всіх залежностей, що розглянуто, кожному значенню питомої електропровідності відповідає два, а для сірчаної кислоти — й чотири різних значення величини концентрації. Але у межах найбільш вірогідних величин концентрації (десь 0...20 .%) величина питомої електропровідності розчинів однозначно пов'язана з величиною концентрації.
Принципову схему для визначення величини концентрації розчинів на основі вимірювання величини опору розчину, залитого у чарунку контактного кондуктоміра, наведено на рис. 5. Цей кондуктомір являє собою автоматичний врівноважений міст, у якому електродну чарунку з досліджуваним розчином позначено як паралельно ввімкнені резистор Rxта ємність Сх. Компенсацію похибок при відхиленні температури довкілля від номінального значення виконує терморезитор Rтз паралельно ввімкненим манганіновим резистором R3. Резистори R1 і R2також зроблено з манганіну. Конденсатор С увімкнено для кращого врівноваження мосту, в якому вже є ємність чарунки Сх. Міст врівноважують реохордом Rp, рухомий контакт якого, разом із покажчиком, приводить до руху реверсивний двофазний двигун РД, обмотка управління котрого живиться електронним підсилювачем П, керованим напругою, що є на вимірювальній діагоналі мосту у його розбалансованому стані. Двигун РД обертається доти, доки є напруга, й зупиняється, коли її не стане після збалансування мосту.
У безконтактному концентратомірі досліджуваний розчин не має контакту з будь-якими електродами, бо ЕРС, що викликає в ньому струм, індукується в одновитковій обмотці, створеній самим розчином.
Будову чутливого елемента такого концентратоміра зображено на рис. 6. Елемент складається з двох трансформаторів Тр1 і Тр2. Обмотку w1першого трансформатора приєднують до мережі змінного струму, а обмотку w2другого — до входу електронного підсилювача автоматичного потенціометра, що вимірює її ЕРС. Зв'язок між трансформаторами здійснює одновиткова обмотка w3, створена досліджуваним розчином, що протікає всередині кільцевої трубки, виконаної з ізоляційного матеріалу. До кільцевої трубки з двох боків приєднано прямі відрізки трубок, по одному з яких розчин надходить у кільце, а по іншому видаляється з нього, даючи можливість проводити вимірювання безперервно, у потоці розчину. Про величину електричного опору рідини, що міститься у замкненому каналі, створеному кільцевою трубкою, посередньо може свідчити величина ЕРС, що індукується в обмотці w2. Величина цієї ЕРС буде пропорційною струмові І2, що проходить кільцем, створеним трубкою з рідиною.
Рис. 6 Чутливий елемент безконтактногоконцентратоміра
Якщо ЕРС, індукована у цьому кільці магнітним потоком, що проходить магнітопроводом трансформатора Тр1, відома й відома величина струму І2, що проходить розчином, котрий міститься у кільці, то питання про величину опору розчину, що заповнює кільце, а отже і величину електропровідності розчину вирішується однозначно — величина електропровідності пропорційна величині ЕРС, виміряної на кінцях обмотки w2. Таким чином, показання автоматичного потенціометра, що вимірює вказану ЕРС, завжди будуть пропорційні величині електропровідності розчину, що є у кільцевому каналі устаткування.
Безконтактний концентратомір дуже зручний тим, що разом з автоматичним потенціометром забезпечує вимірювання і реєстрацію величини електропровідності розчинів у потоці. Необхідно лише, щоб трансформатор Тр1 живився стабілізованою напругою.
З концентратомірів, які використовують на електричних станціях, слід назвати солеміри. Ці прилади застосовують для визначення вмісту солей у живильній воді парових та водогрійних котлів, у конденсаті або парі.