Смекни!
smekni.com

Розробка інвертора напруги для апаратури зв'язку (стр. 7 из 12)

Активна енергія, що виділяється в навантаженні. Червоний графік при джерелі напруги у вигляді чистої синусоїди, синій - при джерелі напруги у вигляді модифікованої синусоїди

З графіків виходить, що активна енергія ефективніше споживається при синусоїдальному джерелі напруги, причому різниця складає 16%. Така ж різниця буде і в активній потужності. Тобто, якщо підключити навантаження, призначене для роботи від мережі 220В до інвертора з формою вихідної напруги у вигляді модифікованої синусоїди, то споживана активна потужність знизиться на 16%. Ефективний струм при цьому знизиться на 9%. Для функціонування навантажень дане пониження активної потужності матиме негативні наслідки: електровібраційні прилади знизять механічну потужність, освітлювальні прилади світитимуть тьмяніше.

4. Види електроприладів з ємкісним характером навантаження і особливості роботи різних типів інверторів з даним виглядом навантаження.

Електричні прилади з ємкісним характером опору рідко застосовуються як закінчений блок, проте часто зустрічаються як частина інших електроприладів, наприклад ємкісні компенсатори реактивній потужності або фазозсувні ємкісні ланцюги для електродвигунів. Оскільки останні види навантажень розглядаються в інших розділах, має сенс розглянути окремо роботу інверторів різних типів на реальну ємкість. Модель реальної ємкості враховує втрати енергії в опорі виводів вживаних конденсаторів і є послідовно включеним ідеальний конденсатор і що емулює опір виводів резистор.

Спочатку розглянемо роботу інвертора з формою вихідної напруги у вигляді чистої синусоїди на реальну ємкість. Процеси, що протікають в цьому ланцюзі аналогічні процесам при роботі такого ж навантаження від мережі 220В. Як відомо, конденсатор в ланцюзі змінного струму є реактивним навантаженням, тобто повна потужність навантаження переважно складається з циркулюючої від навантаження до мережі і назад реактивної потужності і лише невелика частина повної потужності є активною потужністю втрат. При цьому корисний ефект навантаження створює саме реактивна потужність, а активна потужність є паразитним ефектом, що нагріває як саме навантаження так і інвертор. Величина активної потужності, що виділяється в інверторі, пропорційна вихідному опору інвертора.

Тепер же розглянемо роботу на таке ж навантаження інвертора з формою вихідної напруги у вигляді модифікованої синусоїди. Для здобуття наочних результатів використовувалося моделювання в середовищі micro-cap. Модель інвертора з формою вихідної напруги у вигляді модифікованої синусоїди є джерелом напруги з формою модифікованої синусоїди і послідовно включеного опору втрат Rг. Для порівняння використовувалося моделювання схеми з тим же самим навантаженням, але що працює від джерела змінної напруги 220В 50Гц з таким же вихідним опором. Схеми для моделювання представлені на Рис.2.3.7 Номінали елементів типові для звичайних вживань і складають: Сн=10мкФ, Rн=Rг=1Ом.

Рис.2.3.7 Схеми для моделювання в середовищі micro-cap

Результати моделювання представлені на мал. №8. З графіків струму навантаження видно, що форма і амплітуда струмів вельми різні. Струм навантаження з синусоїдальним джерелом напруги має також синусоїдальну форму і амплітуду 977мА, а струм навантаження з джерелом напруги у вигляді модифікованої синусоїди має вигляд експоненціальних імпульсів з амплітудою 152А і вельми короткою (десятки мікросекунд) тривалістю. Такі відмінності обумовлені тим, що у випадку з джерелом напруги у вигляді модифікованої синусоїди конденсатор заряджає від імпульсного джерела напруги з високою швидкістю зміни напруги, для якої конденсатор має низький опір. Тому напруги на опорах втрат Rг і Rн в імпульсі заряду великі і відповідно великі втрати. Виходячи з графіка виділення енергії на опорі втрат, загальна потужність втрат складає для синусоїдального джерела напругу 0.95Вт, а для джерела напруги у вигляді модифікованої синусоїди 98Вт, тобто відрізняється в сто разів.

Струм в навантаженні. Червоний графік при джерелі напруги у вигляді чистої синусоїди, синій - при джерелі напруги у вигляді модифікованої синусоїди

Рис.2.3.8 Графіки струму і енергії втрат для різних видів джерел напруги.

Енергія, що виділяється в опорі втрат. Червоний графік при джерелі напруги у вигляді чистої синусоїди, синій - при джерелі напруги у вигляді модифікованої синусоїди

Можна показати, що потужність втрат при джерелі напруги у вигляді модифікованої синусоїди не залежить від опору втрат, а лише від величини конденсатора. Проте розподіл втрат між інвертором і конденсатором пропорційно їх внутрішнім опорам. Але в будь-якому разі, такий високий рівень пікових струмів і потужності втрат небажаний як для інвертора, так і для навантаження. Небагато типів конденсаторів для мережі 220В здатні працювати з внутрішніми втратами в 100 разів більшими, ніж номінальні.

Також високий рівень струмів при джерелі напруги у вигляді модифікованої синусоїди створює підвищений акустичний ефект при роботі інвертора. Спектральний склад вихідного струму інвертора з формою вихідної напруги у вигляді модифікованої синусоїди при роботі на ємкість вельми широкосмуговий, а амплітуда струму вельми велика, тому звуковий ефект вироблюваний цим струмом вельми гучний і неприємний на слух.

5. Види електроприладів з випрямлячем на вході і особливості роботи різних типів інверторів з даним виглядом навантаження.

Електричні прилади з випрямлячем на вході повсюдно зустрічаються в техніці і в побуті. До цих приладів відноситься побутова електроніка з трансформаторним або імпульсним блоком живлення. Еквівалентна схема підключення такого навантаження представлена на Рис.2.3.9 Джерело живлячої напруги, в даному випадку інвертор, представлене у вигляді генератора напруги Vг з опором втрат Rг. Сам електричний прилад харчується випрямленою напругою і представлений опором Rн. Блок живлення електроприладу складається з мостового випрямляча і конденсатора Сн, що фільтрує. Неідеальність конденсатора моделюється послідовним опором Rк. Опір випрямляча, вхідних провідників і трансформатора живлення (в разі трансформаторного блоку живлення) моделюється послідовним опором Rп.

Рис.2.3.9 Еквівалентна схема підключення електроприладу з випрямлячем на вході.

Робота такого навантаження сильно відрізняється при використанні інверторів з різними видами вихідної напруги. Причина цього така ж, як і для ємкісного навантаження і полягає в тому, що конденсатор Сн, що фільтрує, заряджає від вхідного джерела напруги. Якщо швидкість зміни напруги велика, як при роботі від джерела з формою напруги у вигляді модифікованої синусоїди, то втрати в елементах ланцюга збільшуються багато разів. Можна аналітично показати, що при роботі від джерела з формою напруги у вигляді модифікованої синусоїди загальні втрати енергії залежатимуть лише від амплітуди змінної складової напруги на конденсаторі Сн і величини ємкості цього конденсатора, і не залежати від величини опорів Rг, Rп і Rк. Від величини цих опорів залежатиме лише розподіл втрат серед елементів схеми.

Для здобуття наочних результатів знову використовувалося моделювання в середовищі micro-cap. Для порівняння використовувалося моделювання схеми з одним і тим же навантаженням, але що працює від інвертора з синусоїдальною формою напруги 220В 50Гц і від інвертора з формою напруги у вигляді модифікованої синусоїди. Номінали елементів схеми для моделювання складають: Rн=500Ом, Сн=47мкФ, Rг=Rп=Rк=1Ом. Такі номінали типові для блоку живлення побутової електроніки потужністю 150Вт, наприклад телевізора. Результати моделювання представлені на мал. №10. З графіків вихідного струму інвертора видно, що форма і амплітуда струмів вельми різні для інверторів з різними видами вихідної напруги. Струм інвертора з синусоїдальним джерелом напруги має плавну форму і амплітуду 3.1А, а струм навантаження з джерелом напруги у вигляді модифікованої синусоїди має вигляд експоненціальних імпульсів з амплітудою 20.2А і вельми короткою (сотні мікросекунд) тривалістю. Виходячи з графіка виділення енергії на опорі втрат, загальна потужність втрат складає для синусоїдального джерела напругу 3.5Вт, а для джерела напруги у вигляді модифікованої синусоїди 9.4Вт. Таким чином, загальна потужність втрат при роботі навантаження від інвертора з формою напруги у вигляді модифікованої синусоїди майже в 3 рази більш ніж при роботі того ж навантаження від інвертора з синусоїдальною формою напруги. Оскільки опори втрат включені послідовно, розподіл потужності втрат на кожному конкретному елементі теж зберігатиметься, тому наприклад сам інвертор виділятиме потужності в 3 рази більше, конденсатор і трансформатор блоку живлення також грітимуться в 3 рази більше. Елементи побутових приладів можуть не мати трикратного запасу по вихідній потужності і вийти з буд в результаті живлення від інверторів з формою напруги у вигляді модифікованої синусоїди.

Графік струму в навантаженні. Зелений графік при джерелі напруги у вигляді чистої синусоїди, червоний - при джерелі напруги у вигляді модифікованої синусоїди

Рис.2.3.10. Графіки вихідного струму інвертора і енергії втрат для різних видів інверторів.

Енергія, що виділяється в опорі втрат. Зелений графік при джерелі напруги у вигляді чистої синусоїди, червоний - при джерелі напруги у вигляді модифікованої синусоїди