Кавитационный ультразвук используется для разрушения оболочек растительных или животных клеток и извлечения из них различных биологически активных веществ - ферментов, токсинов, витаминов и др.
В хирургии:
Ультразвук низкой частоты и высокой мощности используют в хирургии для разрушения злокачественных опухолей, дробления камней в мочевом пузыре, распиливания костей, сварки костной ткани, резки тканей и т.п.
В терапии:
На организм при проведении ультразвуковой терапии действуют три фактора: механический, физический (тепловой) и химический.
Механический фактор, обусловленный переменным акустическим давлением, проявляется в вибрационном «микромассаже» тканей на клеточном и субклеточных уровнях. Ультразвук повышает проницаемость клеточных мембран, изменяет микроциркуляцию и коллагеновую структуру тканей, функциональную активность клеток, вызывает акустические микропотоки в протоплазме, что сопровождается стимуляцией функций клеток и клеточных включений.
Химический фактор непосредственно связан с физическим фактором (трансформацией поглощенной энергии ультразвуковой волны в другие виды энергии – тепло и энергию химических реакций). В настоящее время в терапии тепловому эффекту ультразвука придается второстепенная роль. Ультразвук низкой частоты и высокой мощности вызывает образование свободных радикалов и разрушение биологических молекул.
Терапевтическое действие низкочастотного ультразвука основано на комплексном действии механических, тепловых и химических факторов.
Ультразвук этого диапазона малой мощности используется для лечения гнойно-септических заболеваний, для обработки инфицированных ран, благодаря губительному действия ультразвука на многие микроорганизмы. Наиболее чувствительными к действию низкочастотного ультразвука, по мнению большинства исследователей, являются негемолитический стрептококк, вульгарный протей, неклостридиальная анаэробная микрофлора, кишечная палочка, эхинококк, более устойчивыми к озвучиванию считаются золотистый вирулентный стафилококк и синегнойная палочка. Наряду с собственным бактерицидным эффектом низкочастотный ультразвук синергетически усиливает действие многих антибиотиков и антисептиков (диоксидин, фурацилин, пероксид водорода, тетрациклин, линкомицин, ампицилин и др.).
При незначительных мощностях ультразвук повышает проницаемость клеточных мембран (используется в методе ультрафонофореза лекарственных веществ), активизирует процессы тканевого обмена, стимулирует внутриклеточный биосинтез и регенераторные процессы и т.д. Усиление репарационных процессов в тканях при действии низкочастотного ультразвука малой мощности связано с активным влиянием фактора на кровообращение. Ультразвук вызывает расширение кровеносных сосудов, в 2-3 раза увеличивает региональный кровоток.
Низкочастотному ультразвуку малой мощности характерны противовоспалительное действие и иммуностимулирующий эффект.
Все эти эффекты низкочастотного ультразвука малой мощности и обусловливают использование его для терапевтических целей. Ультразвук используют при лечении больных язвенной болезнью желудка и двенадцатиперсной кишки, бронхиальной астмой, хроническим тонзилитом, деформирующим остеоартрозом, пяточной шпорой, псевдоэрозией шейки матки, трофических язв и т.п.
Ультразвук высокой частоты применяется с диагностическими целями. Разница в степени поглощения ультразвука различными тканями может быть использована для выяснения формы и локализации труднодоступных внутренних органов или патологических образований, например, опухолей в ткани головного мозга. При этом соответствующая область тела последовательно по участкам "просвечивается" ультразвуком. Интенсивность прошедшего через ткани ультразвукового луча регистрируется находящимся с другой стороны приемником. Ультразвуковая томография позволяет получать изображения органов в различных сечениях. В данном методе ультразвуковой преобразователь состоит их ряда расположенных в линию излучателей – приемников ультразвуковых волн, включающихся поочередно с высокой частотой чередования. Таким образом, ультразвуковой луч перемещается вдоль линии в определенном сечении исследуемого объекта. Ультразвуковые лучи отражаются от границ раздела структур организма, доходят до приемника, где преобразуются в электрические сигналы. Электрические сигналы поступают на усилитель яркости электронного луча монитора. На экране монитора наблюдается изображение границ органа в данном сечении. Для получения изображения другого участка органа ультразвуковой преобразователь передвигается вручную (рис. 3).
Рис. 3 - Схема метода ультразвуковой томографии.
Методами УЗ диагностики являются эхоэнцефалография, УЗ кардиография (измерение размеров сердца в динамике), ультразвуковая локация для определения размеров глазных сред (в офтальмологии). Одним из перспективных методов ультразвуковой диагностики является исследование гемодинамики, основанное на эффекте Доплера.
3. Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
Эффектом Доплера называют изменение частоты волн, воспринимаемых наблюдателем (приемником волн), вследствие относительного движения источника волн и наблюдателя.
Эффект заключается в том, что при приближении источника каких-нибудь волн к наблюдателю приходит большее число волн в секунду, чем когда источник колебаний удаляется. Это приводит к тому, что наблюдатель воспринимает большее число колебаний в секунду, когда источник приближается к нему, и меньшее, - когда удаляется.
Рис. 4 - Схема для вывода формулы эффекта Доплера
Пусть источник звука S движется к наблюдателю со скоростью Vи м/сек (рис. 4). Источник звука посылает звуковые колебания с частотой n. Следовательно, за 1/n сек. источник S посылает одну волну, распространяющуюся с некоторой скоростью V. За время 1/n источник S приближается к наблюдателю на величину Vи× (1/n) м.. Следовательно, конец следующей волны, исходящей от источника через 1/n секунд, будет отделен в пространстве от конца предыдущей волны не расстоянием (длина волны), как это было бы в случае неподвижного источника, а меньшим:
Таким образом, наблюдатель будет воспринимать звук меньшей длины волны l. Соответствующая частота:
. (1)Легко вывести аналогичным образом, что если источник звука удаляется со скоростью V , то воспринимаемая наблюдателем частота равна:
(2)
Если рассматривать движение наблюдателя к источнику звука, то вследствие более частых "встреч" с гребнями волн частота воспринимаемых колебаний увеличивается.
Пусть наблюдатель движется к источнику звука со скоростью V м/сек. Тогда скорость звука относительно наблюдателя будет равна V + VН , и мимо наблюдателя в единицу времени пройдет волн, причем, как обычно, ; с другой стороны, ; таким образом, .
При движении наблюдателя от источника получим соответственно:
. (3)
Все формулы, относящиеся к указанным случаям, при малых значениях скорости Vu и Vн делаются тождественными. Именно , где знак минус соответствует удалению, а плюс - сближению наблюдателя и источника со скоростью V и,н.
Таким образом, при сближении источника волн и наблюдателя воспринимаемая частота больше испускаемой, при удалении - меньше.
Эффект Доплера используют для определения скорости движения источника или приемника звука относительно среды. На этом основан, в частности, один из методов измерения скорости кровотока в сосудах человека и животных с помощью ультразвуковых волн.
Ультразвуковой метод определения скорости кровотока
На рисунке 5 приведена схема измерения скорости кровотока на основе эффекта Доплера.
От генератора 1 электрических колебаний УЗ-частоты сигнал поступает на УЗ излучатель 2 и на устройство сравнения частот 3. Ультразвуковая волна 4 проникает в кровеносный сосуд 5 и отражается от движущихся эритроцитов 6. Отраженная ультразвуковая волна 7 попадает в приемник 8, где преобразуется в электрическое колебание и усиливается. 9 – Мягкие ткани, в глубине которых расположен сосуд.
Рис. 5 - Схема установки измерения скорости кровотока на основе эффекта Доплера