9. Метод индикации частичных разрядов
Одной из основных причин старения изоляции и повреждений современных герметизированных вводов являются ЧР. Разряды постепенно разрушают БМИ, что в конечном итоге приводит к пробою или перекрытию по поверхности изоляционной конструкции.
ЧР в изоляции приводят к нейтрализации некоторого заряда в месте дефекта с последующим изменением зарядов элементов схемы испытаний. Внешними проявлениями процесса ЧР в изоляции являются импульсы напряжения во вводе и вызванный ими ток переходного процесса. Сам ток ЧР современными методами непосредственно измерить невозможно, однако вызванные им быстрые изменения электромагнитного поля могут быть отмечены достаточно чувствительным прибором.
В настоящее время больше всего применяют два метода обнаружения ЧР в изоляции: электрический и акустический.
Электрический метод основан на измерении тока переходного процесса во внешней цепи. Этот ток можно определить как произведение кажущегося заряда ЧР на соответствующий коэффициент.Импульс тока ЧР создает импульс давления в окружающей среде, который может быть зарегистрирован соответствующим устройством. На этом принципе основаны акустические методы обнаружения ЧР.
Особенностью всех методов измерения ЧР является необходимость приведения показаний измерительного устройства к значению кажущегося заряда ЧР или другого параметра. Это производится при помощи градуировки, т.е. путем сравнения показаний измерительного устройства, вызванных разрядами, с показаниями при приложении к изоляции ввода градуировочных воздействий с известными количественными характеристиками.
Способы градуировки при измерении электрическими методами хорошо разработаны - имеются необходимые градуировочные устройства. Проблемы градуировки при акустических измерениях еще не решены. Кроме того, показания акустических измерительных устройств существенно зависят от места возникновения разрядов, условий прохождения сигналов и от затухания их в элементах изоляционной конструкции. Поэтому акустические методы контроля в настоящее время могут использоваться лишь для обнаружения наличия ЧР.
Устройство для измерения ЧР (рис.3.6.) состоит из первичного измерительного преобразователя (измерительного элемента) 1 и измерительного прибора 2.
Рис.6. Структурная схема измерительного устройства ЧР.
Измерительный элемент 1 преобразует импульсы тока в контролируемой цепи, вызванные ЧР в импульсы напряжения, подаваемые на вход измерительного прибора. В измерительном приборе 2 производится преобразование полученных на выходе измерительного элемента 1 импульсов напряжения и измерение их параметров. Основными узлами измерительного прибора 2 являются регулятор чувствительности 3, фильтр 4, усилитель 5 и индикатор 6. Регулятором чувствительности выбирается диапазон измерения. Основное назначение фильтра - подавление напряжения промышленной (испытательной) частоты и его высших гармоник. Для этого применяется фильтр высших частот. Часто фильтр используется для формирования полосы пропускания измерительного устройства - в этом случае применяется полосовой фильтр. В некоторых приборах фильтры не применяются, а обе функции - подавление низкочастотных напряжений и формирование полосы - выполняют другие элементы(датчик, усилитель).
После усиления импульсы поступают на вход индикатора, назначением которого является измерение основных характеристик последовательности импульсов, возникающих при ЧР. Показания индикатора прибора а приводятся к значению кажущегося заряда qпо формуле
q=Ка,
где К - градуировочный коэффициент измерительного устройства, включенного в испытательную схему.
Существуют несколько различных модификаций устройства измерения ЧР:
-индикатор ЧР, измерение с помощью которого производится во время испытания изоляции приложенным повышенным напряжением, а также в случаях, когда в условиях эксплуатации ввод оборудован стационарным устройством присоединения;
-сигнализатор ЧР для автоматического непрерывного контроля в условиях эксплуатации;
-дефектоскоп - переносное устройство, предназначенное для контроля изоляции под рабочим напряжением при помощи бесконтактных датчиков.
С целью ранней диагностики применяют методы измерений, выявляющие ЧР с интенсивностью меньшей, чем интенсивность критических разрядов (порядка 10-9 Кл). Для сигнализации предаварийного состояния достаточно выявить разряды критической интенсивности. При этом необходим частый или даже непрерывный контроль. Имеются данные об успешном выявлении дефектов изоляции ввода 750 кВ путем измерения ЧР с интенсивностью порядка 10-6 Кл. При испытаниях герметичных вводов 110 кВ были измерены разряды интенсивностью (3-6)10-6 Кл.
Однако необходимо отметить следующие недостатки метода непосредственного измерения ЧР.
Во-первых, сигналы ЧР очень слабые, а при измерениях ЧР в условиях эксплуатации источники помех, как правило, не могут быть устранены, тем самым сильно искажают результаты измерений. Ниже 15 кГц возможно влияние высших гармоник промышленной и комбинированных частот, выше 2 МГц возможно снижение уровня сигнала от ЧР. В верхней области частот часто имеются помехи от мощных местных радиопередатчиков. Основным источником неустранимых помех при измерениях в эксплуатационных условиях являются коронные разряды на проводах, арматуре и оборудовании (основной уровень помех). В распределительных устройствах иногда наблюдается также высокий дополнительный уровень помех, который обычно является следствием ЧР, внешних по отношению к контролируемому вводу. К ним относятся разряды между шинами и головками проходных трансформаторов тока при отсутствии между ними перемычки, разряды между элементами токопроводов блочных трансформаторов, разряды на заостренных краях арматуры или на концах ножей отключенных разъединителей и т.п.
Во-вторых, если за период времени, равный продолжительности реакции устройства, на входе измерительного элемента 1 (рис.3.6) будут действовать несколько импульсов, то их энергия суммируется и на выходе появится один эквивалентный импульс. При этом не только будет утеряна такая характеристика, как количество разрядов (или их средняя частота следования), но и будут искажены данные о заряде импульсов, ибо на выходе усилителя амплитуда импульсов будет иметь случайное значение, зависящее не только от заряда, но и от интервала между импульсами.
10. Оценка технического состояния трансформаторных вводов на основе теории нечетких множеств
Традиционным методам диагностики трансформаторных вводов присущи многие недостатки, так как они не учитывают существующую неполноту и нечеткость информации о состоянии ввода.
Анализ опытов диагностики вводов обнаруживает, что для большинства случаев существует такое решающее правило "если параметр X не выше нормы Xн, то ..., а если параметр X выше нормы Xн , то ... ". Норма Xн обычно определяется из результата статистической обработки аварийных состояний по параметру X, однако чем больше мощность и класс напряжения силового трансформатора, тем скуднее такая статистика в связи с трудностью ее реализации. Это привело к тому, что норма Xн - нечеткая величина и нет резких границ или жестких граней, отделяющих одно состояние ввода от другого.
Другое непростое обстоятельство при диагностике вводов по традиционным методам заключается в том, что количество контролируемых параметров значительно, поэтому количество комбинаций этих параметров (при разных условиях) довольно большое. А опыт диагностики в виде решающих правил "если параметр X1..., параметр X2..., ..., параметр Xп..., то ..." не охватывает полный набор комбинаций параметров. Отсюда возникает вопрос: если комбинация параметров находится вне существующих решающих правил, то какое решение необходимо принимать в таком случае ?
Для преодоления этих трудностей целесообразно применять теорию нечетких множеств Заде [9]. Эта теория была предложена для количественного анализа таких гуманистических систем как лингвистика, экономика, политика. Однако в последнее время отмечено применение теории нечетких множеств в технике для решения задач проектирования и управления в медицинской диагностике.
В теории канторовских множеств произвольное подмножество А универсального множества Uоднозначно определяется своим индикатором:
Заде расширил класс подмножества U, введя понятие нечеткого, "расплывчатого" множества. Нечеткому множеству соответствует обобщенный индикатор (числовые функция со значениями из всего отрезка [0,1]), получивший название функции принадлежности µ(x). Тогда справедливо следующее определение: нечеткое множе-ство содержит элементы с функциями принадлежности, принимаю-щими любые значения на интервале [0,1], хотя бы одна из которых отлична от единицы.
Ниже приведем основные определения и операции с нечеткими множествами, которые необходимые нам при решении задачи диагностики трансформаторных вводов [8].
Объединением нечетких множеств А и В в пространстве Xназывается нечеткое множество А и В с функцией принадлежности, определяемой соотношением вида
,или, в дизъюнктивной форме,
,где символ ”V “ означает максимум.
Пересечением нечетких множеств А и В в пространстве Vназывается нечеткое множество А ^ В с функцией принадлежности, определяемой соотношением вида
,или, в конъюнктивной форме,