Механические колебания
Содержание
1. Механические колебания
1.1 Механические колебания: гармонические, затухающие и вынужденные колебания
1.2 Автоколебания
1.3 Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных
1.4 Механические волны, их виды и скорость распространения
1.5 Энергетические характеристики волны
Список использованных источников
1. Механические колебания
1.1 Механические колебания: гармонические, затухающие и вынужденные колебания
Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).
В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и т.д. Мы будем рассматривать механические колебания. Колебания, происходящие при отсутствии трения и внешних сил, называются собственными; их частота зависит только от свойств системы.
Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.
Дифференциальное уравнение гармонического колебания
Рассмотрим простейшую колебательную систему: шарик массой m подвешен на пружине.
В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F1 + F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:
F=-kx,(1)
где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.
(3)
где (w0 t + a0) = a — фаза колебаний; a0 — начальная фаза при t = 0; w0 — круговая частота колебаний; A — их амплитуда.
Итак, смещение x изменяется со временем по закону косинуса.
Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.
.
Для пружинного маятника получаем:
.
Круговая частота связана с обычной n соотношением: .
Энергия при гармоническом колебании
Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:
, (4)где k = m w02.
Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):
EП.
(5)Складывая (4) и (5), с учетом соотношения
, получим:E = EK + EП =
. (6)Таким образом, полная энергия гармонического колебания остается постоянной в отсутствие сил трения, во время колебательного процесса кинетическая энергия переходит в потенциальную и наоборот.
Затухающие колебания
Колебания, происходящие в системе при отсутствии внешних сил (но при наличии потерь на трение или излучение), называются свободными. Частота свободных колебаний зависит от свойств системы и интенсивности потерь.
Наличие трения приводит к затухающим колебаниям. Колебания с убывающей амплитудой называются затухающими.
Допустим, что на систему, кроме квазиупругой силы, действуют силы сопротивления среды (трения), тогда второй закон Ньютона имеет вид:
. (7)Ограничимся рассмотрением малых колебаний, тогда и скорость системы будет малой, а при небольших скоростях сила сопротивления пропорциональна величине скорости:
, (8)где r - коэффициент сопротивления среды. Знак " - " обусловлен тем, что Fтри V имеют противоположные направления.
Подставим (8) в (7). Тогда
илиОбозначим
где b — коэффициент затухания, w0 — круговая частота собственных колебаний. Тогда
(9)
Решение этого уравнения существенно зависит от знака разности: w2 = w02 -b2, где w — круговая частота затухающих колебаний. При условии w02 -b2 > 0, w является действительной величиной и решение (3) будет следующим:
(10)
График этой функции дан на рисунке.
Рис. 2. Затухающие колебания.
Пунктиром изображено изменение амплитуды: A = ±A0e-bt.
Период затухающих колебаний зависит от коэффициента трения и равен:
(11)При незначительном сопротивлении среды (b2 <<w2) период практически равен . С ростом коэффициента затухания период колебаний увеличивается.
Из формулы, выражающей закон убывания амплитуды колебаний, можно убедиться, что отношение амплитуд, отделенных друг от друга интервалом в один период (Т), остается постоянным в течение всего процесса затухания. Действительно, амплитуды колебаний, отделенные интервалом в один период, выражаются так:
.Отношение этих амплитуд равно:
. (12)Это отношение называют декрементом затухания.
В качестве меры затухания часто берут величину натурального логарифма
этого отношения:
Эта величина носит название логарифмического декремента затухания за период.
При сильном затухании b 2 > w02 из формулы (11) следует, что период колебания является мнимой величиной. Движение при этом носит апериодический (непериодический) характер - выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий.
Вынужденные колебания. Резонанс
Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающей силы). Пусть вынуждающая сила изменяется со временем по гармоническому закону: f = F0 cosW t , где F0 - амплитуда, W - круговая частота вынуждающей силы.
При составлении уравнения движения нужно учесть, кроме вынуждающей силы, также те силы, которые действуют в системе при свободных колебаниях, то есть квазиупругую силу и силу сопротивления среды. Тогда уравнение движения (второй закон Ньютона) запишется следующим образом:
.
Разделив это уравнение на m и перенеся члены с dx и d2x в левую часть получим неоднородное линейное дифференциальное уравнение второго порядка: