Ядерная физика в геологии
Нетрудно предположить, что залежи минералов, обладающих естественной радиоактивностью, обнаружить несложно. Методы их обнаружения сводятся к регистрации их излучений, причем для предварительной разведки достаточно анализа, проведенного с самолета. Однако ядерная физика помогает решать и более сложные задачи; а именно — обнаруживать месторождения минералов, которые не имеют естественной радиоактивности. В этом случае разведка ископаемых проводится нейтронами и γ-квантами, а иногда и электронами. Если породу облучать γ-квантами, то будет происходить рассеяние и поглощение излучения породой. Поглощение γ-квантов приводит к образованию нейтронов, регистрируя интенсивность которых можно сделать выводы о характере породы. Важную информацию несут также интенсивность рассеянных γ-квантов и степень их поглощения. Например, по рассеянию и поглощению γ-излучения судит о влажности и плотности породы, по числу образующихся нейтронов — о содержании в породе бериллия, а в воде — дейтерия. Что касается облучения нейтронами, то здесь объем информации, которую можно получить, гораздо больше, чем в предыдущем методе. В породе нейтроны могут испытывать последовательные упругие и неупругие соударения с атомными ядрами. Процессы, происходящие при этом, существенно различаются, что позволяет разработать методы распознавания большого количества атомных ядер, а значит точно определять свойства ископаемых. Рассмотрим подробней, какие процессы имеют место при взаимодействии нейтронов с ядрами атомов. В результате неупругих взаимодействий идут реакции поглощения нейтрона с испусканием протона, α-частицы или антинейтрона. Это приводит к возникновению новых — радиоактивных — ядер и частиц. Нейтрон при этом может либо перейти в состав образующегося ядра, либо лишиться части своей энергии. Упругое рассеяние приводит к замедлению нейтрона (т.е. он теряет свою энергию постепенно) в процессе перемещения по породе. В результате нейтрон либо превращается в тепловой нейтрон, либо поглощается ядром атома. Параметрами, характеризующими среду, в этом случае выступают интенсивность рассеянных нейтронов, время замедления быстрого нейтрона и расстояние, которое он пройдет за это время. Тепловой нейтрон (т. е. нейтрон, кинетическая энергия которого в результате соударений сравнялась с энергией теплового движения атомов) будет перемещаться но породе до тех пор, пока не поглотится атомным ядром. При этом свойства среды определяют интенсивность тепловых нейтронов, время жизни и путь, пройденный ими до поглощения. Часто эти данные используются для определения содержания в среде водорода (вода, нефть) и солей. В результате поглощения медленных и тепловых нейтронов происходит излучение γ-кванта и образование искусственно-радиоактивных ядер. Параметрами, зависящими от свойств среды, являются характер радиоактивности ядер (β, γ), период полураспада, интенсивность испускаемых частиц и их энергия. В силу того что расстояние, которое частица проходит в породе, достаточно мало, необходимо, чтобы источник излучения, детектор и исследуемая среда находились на расстоянии не более нескольких десятков сантиметров. Поэтому основной областью применения этой методики является исследование нефтяных, газовых, угольных, рудных и др. скважин. Этот метод исследования носит название радиоактивного каротажа скважин. Для его осуществления в скважину опускают глубинный прибор, состоящий из источника и детектора излучения, которые разделены экраном. Комбинируя источники (γ или п) и детекторы (γ или п), можно моделировать и изучать любой из процессов взаимодействия, γ-излучения и нейтронов с ядрами. На основе этого выделяют, n-n-каротаж, γ-γ-каротаж, γ-n-каротаж и т. д. Существует также γ-каротаж, с помощью которого можно определять фоновую радиоактивность γ-радиоактивных пород. В качестве источников γ-квантов используют искусственно-радиоактивные изотопы кобальта, цезия и др., в качестве источников нейтронов — Ро-Ве- или Pu-Be-источники и испульсные нейтронные генераторы. Использование каротажа позволяет точно определить вид ископаемого. Например, γ-γ-каротаж выделяет угольные пласты, п-п- и n-у-каротаж дают возможность выделять водородсодержащие пласты (т. е. породы, насыщенные водой или нефтью) и породы, которые способны усиленно поглощать нейтроны (бор, хлор и т. д.). Если же два последних метода применять совместно, то можно различать воду и нефть, т. к. подземная вода обычно сильно засолена (содержит NaCl и другие соли). Следует отметить, что полезными ископаемыми богато дно морей и океанов. Разведка этих залежей стала намного проще и эффективнее благодаря методам, основанным на ядерных реакциях. Облучение поверхности дна океана нейтронами сообщает ядрам атомов, входящих в состав грунта, наведенную радиоактивность. Обнаруживается она с помощью γ-детектора. Ядерный состав породы при этом определяется благодаря тому, что энергия испускаемых разными ядрами γ-квантов и период полураспада — индивидуальные характеристики атома определенного вида.
Заключение
В самом конце XIX столетия, занимаясь довольно хорошо известным в то время процессом люминесценции, Беккерель неожиданно наткнулся на совершенно новое явление - радиоактивность. Природа преподнесла исследователю подарок - позволила заглянуть в новый, неизведанный мир субатомной физики. Перед исследователями, которые работали в этой области в XX веке, открылся совершенно иной мир, со своими закономерностями, так не похожий на привычный мир, описываемый классической физикой. Оказалось, что установленные новые законы работают не только на очень малых расстояниях, но и определяют физические явления, происходящие в колоссальных масштабах Вселенной. XX век принес много неожиданностей и вряд ли сегодня мы можем предсказать, что готовит нам век XXI.
Используемая литература
1. Э. Ферми "Ядерная физика",пер. с англ., Москва, изд.
"Иностранная литература", 1951 г.
2. В.Е. Левин "Ядерная физика",Москва, Атомиздат, 1985 г.
3. А.С. Герасимов, Т.С. Зарицкая, А.П. Рудик "Справочник по образованию нуклидов в ядерных реакторах", Москва,
Энергоатомиздат, 1989 г.
4. В.Д. Сидоренко, В.М. Колобашкин, П.М. Рубцов, П.А. Ружанский
"Радиационные характеристики облученного ядерного топлива", справочник, Москва, Энергоатомиздат, 1983 г.