Смекни!
smekni.com

Рефрактометр Рэлея (стр. 2 из 2)

Указанный сдвиг картины является следствием увеличения оптического пути на величину

(9)

приобретенного тем световым пучком, в который введено прозрачное тело длины Lс показателем преломления nвещ. Этот сдвиг интерференционной картины и используется для измерения показателя преломления nвещ. введенного в световой пучок тела. Для большей ясности изложения мы здесь и ниже говорим об одном прозрачном теле, введенном в один из световых пучков. Так и показано на рис. 3. Фактически дело обстоит несколько иначе. Если мы работаем с газом или жидкостью, то они должны содержаться в кювете с плоскими стеклами на торцах, через которые проходит световой пучок. Введение уже одних только стекол в один световой пучок создаст огромную разность хода между двумя световыми пучками, используемыми в интерферометре. Поэтому фактически кюветы вводятся всегда в оба световых пучка, но заполняется исследуемым газом лишь одна из них, а другая бывает заполнена воздухом или другим эталонным газом. Тогда наличие торцовых стекол кювет в обоих световых пучках взаимно компенсируется, и сдвиг интерференционной картины будет следствием лишь различия показателей преломления газов, заполняющих кюветы.

Сам метод измерений показателя преломления принадлежит к распространенному в физике классу компенсационных измерений. Как видно на рис. 3(а,b) в интерферометре есть еще добавочное приспособление, состоящее из двух плоско-параллельных стеклянных пластинок В1 и В2, о назначении которых не говорилось раньше. Эта пара наклонных пластинок и образует так называемый компенсатор прибора. Устроен он следующим образом. Наклонно расположенные стеклянные пластинки пересекают верхние, проходящие через газовые кюветы световые пучки. Одна из пластинок неподвижна, а другая может вращаться вокруг горизонтальной оси, изменяя свой наклон по отношению к проходящему сквозь нее световому пучку. Следовательно, при этом изменяется и эффективная толщина пластинки, пересекаемой световым пучком. Изменяя угол наклона пластинки к световому пучку, можно тем самым изменять оптическую разность хода лучей, прошедших через газовые кюветы и, в частности, сводить ее к нулю, если она предварительно уже создана неполной идентичностью изготовления кювет.

Подвижная пластинка компенсатора поворачивается с помощью рычага, приводимого в движение микрометрическим винтом, установленным на интерферометре вблизи его окуляра (см 1, рис. 6.). Головка винта снабжена делениями. Она перемещается относительно линейной шкалы с делениями. По изменению отсчетов на головке и шкале, наблюдаемой через лупу 2, можно отмечать изменение наклона подвижной пластины компенсатора.

Использование компенсатора для измерения показателя преломления заключается в следующем. Пусть обе газовые кюветы наполнены одинаковым газом, а видимые в окуляр интерференционные полосы не точно совпадают друг с другом ( за счет неиндентичности кювет ). Тогда с помощью компенсатора можно привести верхнюю интерференционную картину к полному совпадению с нижней (индикаторной картиной). Такому совпадению будет соответствовать некоторый отсчет на головке и шкале индикатора. Этот отсчет будет в дальнейшем являться нулевым рабочим отсчетом прибора. Далее необходимо установить соответствие между отсчетами на компенсаторе и той разностью хода Δ, которую при каждом своем положении вносит между световыми пучками подвижная пластина компенсатора. Операция установления этого соответствия носит название калибровки компенсатора, а ее результаты изображаются калибровочной таблицей (находится при приборе). При наличии калибровочной таблицы измерения на интерферометре сводятся к следующему. Оставляя неизменным состав эталонного газа, наполняющего одну из кювет интерферометра, наполняют исследуемым газом другую кювету. Компенсируя для каждого газа получившийся сдвиг интерференционной картины, и, сопоставляя отсчеты на компенсаторе с калибровочной таблицей, находят величину оптической разности хода световых пучков в обеих кюветах. Зная Δ, можно по формуле (9) найти


(10)

причем в качестве nвозд нужно брать выражение

где Т - температура эталонной кюветы, Р - давление эталонной кюветы.

Система изменения давления. Поскольку измеряется зависимость n=n(Р), то необходимо изменять давление воздуха в измерительной кювете. Система изменения и измерения давления в кювете представлена на рис. 7. Насос Камовского Н нагнетает воздух в балластный баллон Б, позволяющий плавно менять давление воздуха. Тройник Т соединяет баллон Б с водяным манометром М и установкой. Для того, чтобы в рефрактометр не попадали пары воды из манометра, включена диафрагма Д (резиновый шарик в бутылке). На время измерения рекомендуется отключить баллон Б с помощью крана-тройника.

Рис.3.



ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1 .Попросить преподавателя включить прибор.

2.Наблюдая в окуляре рефрактометра за интерференционной картиной, с помощью микровинта добиваются совмещение верхних и нижних интерференционных линий. По шкале барабана микровинта записывают нулевое положение.

3.Стеклянный кран перевести в положение "открыто". Включить микрокомпрессор. Добиться разности уровней воды в коленах монометра 4 см. и закрыть кран. Выключить микрокомпрессор.

4. Наблюдая в окуляре за интерференционной картиной, с помощью микровинта добиваются совмещения верхних и нижних интерференционных линий. Записать значение по шкале барабана.

5.Увеличивая давление каждый раз на 4 см., проделать п. 3, 4 не менее 20-30 раз.

6. Подписать данные у преподавателя. Выключить прибор.

Данные по работе:

L= 0,5 м ; nвозд = 1,000292 при 0° С, 760 мм. рт. ст.

λ = 5461 Å ; 1 Å = 10-10 м ; 1 а = 7,5 10-3 мм. рт. ст.

1 Па = 0,102 мм. вод. ст. ; Δ = 0,0375 tλ, где t - отсчет по шкале, минус отсчет нуля прибора ИТР-1.

Содержание отчета.

1.Результат подписанный преподавателем.

2.Результаты обработки измерений : а) заполнить таблицу:

№ опыта t-t0 Δ nвещ P

б)построить график зависимости (nвещ -1) от Р.

в)вычислить по углу наклона прямой из графика и формулы Ко = 2πλ/KT поляризуемость молекул ά.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Почему n = n(Р), n = n(λ) ?

2.Схема установки. Для чего нужны две кюветы?

З. Куда пускается газ и где находится клин?

4. Какой вид имеет интерференционная картина и почему?

5. Как выглядела бы интерференционная картина, если бы ширина щели стремилась к нулю?

6. Как измеряется показатель преломления в работе?

ИСПОЛЬЗУЕМАЯ И РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Ландсберг Г.С. «Оптика», М., «Наука», 1976 г. - 928 с.

2. Захарьевский А. Н. Интерферометры. М., 1952.

3. Физический практикум под редакцией В. И. Ивероновой. Электричество и оптика. М., 1968.