Смекни!
smekni.com

Принципы томографии (стр. 2 из 5)

Переходы

Частица может подвергаться переходу между двумя энергетическими состояниями, поглощая фотон. Частица на нижнем энергетическом уровне поглощает фотон и оказывается на верхнем энергетическом уровне. Энергия данного фотона должна точно соответствовать разнице между этими двумя состояниями. Энергия протона, Е, связана с его частотой,

, через постоянную Планка (h = 6.626x10-34 Дж с).

E = h

В ЯМР и МРТ величина

называется резонансной или частотой Лармора.

Диаграммы энергетических уровней

Энергия двух состояний спина может быть представлена с помощью диаграммы энергетических уровней.

Известно, что

=
B и E = h
, поэтому, для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией

E = h

B

Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии. В ЯМР экспериментах частота фотона соответствует радиочастотному (РЧ) диапазону. Для ядер водорода в ЯМР-спектроскопии,

находится в пределах 60 и 800 MГц. В клинической МРТ, для отображения водорода,
как правило находится между 15 и 80 MГц.

Стационарный МР метод

Самым простым ЯМР исследованием является стационарный МР (или свип-МР) метод. Существуют два пути проведения этого эксперимента. При первом, непрерывное РЧ облучение с постоянной частотой, исследует энергетические уровни, в то время как магнитное поле варьируется. Энергия этой частоты представлена синей линией на диаграмме энергетических уровней.

Стационарный метод может также быть проведен с постоянным магнитным полем, когда варьируется частота. Величина постоянного магнитного поля представлена положением вертикальной синей линией на диаграмме энергетических уровней.

Статистика Больцмана

Когда несколько спинов помещены в магнитное поле, каждый принимает одну из двух возможных ориентаций.

При комнатной температуре количество спинов на нижнем энергетическом уровне, N+, незначительно превосходит количество на верхнем уровне N-. Статистика Больцмана показывает, что

N-/N+ = e-E/kT.

Е - разность энергии между спиновыми состояниями,

k - постоянная Больцмана

(1.3805x10-23 Дж/К) и Т - абсолютная температура.

При уменьшении температуры уменьшается отношение N- /N+. При увеличении температуры отношение увеличивается.

Сигнал в ЯМР-спектроскопии получается из разности между поглощенной энергией спинами, которые подверглись переходу с более низко энергетического уровня на более высокий и энергией, испускаемой спинами, которые одновременно перешли с более высокого энергетического уровня на более низкий. Сигнал пропорционален разности в заселенностях уровней. ЯМР является достаточно чувствительной спектроскопией, поскольку может различать такие небольшие различия в заселенностях. Резонанс или энергетический обмен между спинами и спектрометром на определенной частоте придают ЯМР такую чувствительность.

Спиновые пакеты

Весьма обременительным является описание ЯМР на микроскопическом уровне. Макроскопическая картина более удобна. Первым шагом к созданию макроскопической картины определим спиновый пакет. Спиновый пакет - это группа спинов испытывающих на себе одну и ту же силу магнитного поля. В этом примере, спины внутри каждой секции решетки представляют собой спиновый пакет. В любой момент времени магнитное поле, соответствующее спинам в каждом спиновом пакете может быть представлено вектором намагниченности.

Величина каждого вектора пропорциональна (N+ - N-).

Сумма всех векторов намагниченности всех спиновых пакетов является суммарной (общей) намагниченностью. Для описания импульсного ЯМР необходимо пользоваться термином суммарной намагниченности.

Для преобразования в общепринятую ЯМР систему координат, внешнее магнитное поле и вектор общей намагниченности направляются вдоль оси Z.

T1-процессы

В состоянии равновесия, вектор суммарной намагниченности параллелен направлению примененного магнитного поля Bo и называется равновесной намагниченностью Mo. В этом состоянии, Z-составляющая намагниченности MZ равна Mo. Еще MZ называется продольной намагниченностью. В данном случае, поперечной (MX или MY) намагниченности нет.

Суммарную намагниченность можно изменить, подвергнув ядерный спин воздействию энергией частоты равной разности энергии между спиновыми состояниями. Если в систему поступило достаточно энергии, можно насытить спиновую систему и сделать MZ=0.

Временная константа, описывающая, как MZ возвращается к равновесному значению, называется временем спин-решеточной релаксации (T1). Это явление описывается уравнением, являющимся функцией от времени t, которое после преобразования имеет вид:

Mz = Mo ( 1 - e-t/T1 )

поэтому T1 определяется как время, необходимое для того, чтобы изменить Z-составляющую намагниченности коэффициентом е.

Если суммарная намагниченность стала направлена вдоль отрицательного направления оси Z, она постепенно вернется в состояние своего равновесия вдоль положительного направления оси Z, со скоростью, определяемой T1. Это явление описывается уравнением, являющимся функцией от времени t, которое после преобразования имеет вид:

Mz = Mo ( 1 - 2e-t/T1 )

Время спин-решеточной релаксации (T1) - это время необходимое для уменьшения разности между продольной намагниченностью (MZ) и ее равновесным значением с коэффициентом е.

Если суммарная намагниченность расположена в плоскости XY , она будет вращаться вокруг оси Z с частотой, равной частоте фотона, который вызывает переход между двумя энергетическими уровнями спина. Эта частота называется частотой Лармора.