Смекни!
smekni.com

Разработка электроприводов прессовых машин (стр. 5 из 19)

4 - категория размещения (4 - в закрытом помещении с отоплением и вентиляцией).

Широкорегулируемые повышенной точности с пристроенным тахогенератором постоянного тока и датчиком тепловой защиты, с независимой вентиляцией от пристроенного электровентилятора типа "наездник", степень защиты IР238 по ГОСТ 17494-87, способ охлаждения IС06 по ГОСТ 20459-87.

Расположение вентилятора на торцевой поверхности электродвигателя со стороны коллектора, или на боковой поверхности, сверху. Возможна установка фильтра вентилятора для защиты от попадания пыли вовнутрь. Применена изоляция класса нагревостойкости F по ГОСТ 8865-87.

Группа механического исполнения по ГОСТ 17516.1-90. Конструктивное исполнение по способу монтажа IМ2101 по ГОСТ 2479-79 - горизонтальное, вертикальное валом вверх или валом вниз, крепление за лапы, за фланец.

Режим работы продолжительный S1, допускается работа в режимах S2-S8 по ГОСТ 183-74.

Средний уровень звука при номинальной частоте вращения до 900 мин"1 соответствует классу 1, при номинальной частоте вращения 900 мин" и выше, соответствует классу 2.

Двигатели допускают регулирование частоты вращения напряжением якоря в диапазоне от 0 до 460 В при постоянном моменте, при этом допускается стоянка с моментом, равным половине номинального.

Двигатели допускают регулирование частоты вращения до максимальной ослаблением поля при номинальном напряжении на якоре в диапазоне не менее 1:3 при постоянной мощности.

Условия эксплуатации:

-высота над уровнем моря не более 1000 м;

-температура окружающей среды от 1 до 40°С;

-относительная влажность воздуха до 98% при 1=35°С:

-окружающая среда невзрывоопасная, не содержащая металлической или другой токопроводящей пыли, агрессивных газов и паров в концентрациях разрушающих металлы и изоляцию;

-надежность и долговечность;

-вероятность безотказной работы за наработку 10 000ч не менее 0,95;

-средний ресурс до списания 30 000ч;

-средний срок службы 1 5 лет.

4.3 Датчики тока и скорости

Наибольшее распространение в регулируемом электроприводе имеют датчики тока и скорости, необходимые для формирования замкнутых контуров в системе регулирования.

Известны две основные системы образования токовой обратной связи: по переменному току на первичной обмотке трансформатора и по постоянному току цепи якоря двигателя. В данной работе используем второй способ. В этом случае измеренное напряжение снимается с шунта, включенного в цепь якоря двигателя. При этом отпадает необходимость в выпрямлении напряжения, однако чувствительность схемы невелика. Номинальное напряжение, снимаемое с шунта, составляет 0,075 или 0,1 В и нуждается в последующем усилении.

(4.17)

(4.18)

Ом (4.19)

где

-напряжение, снимаемое с шунта,
В;

-ток якоря электродвигателя

Данное устройство является стандартным, поэтому с учетом номинального значения тока якоря выбираем шунт типа: номинальный ток которого А, номинальное падение напряжения 75 мВ, класс точности

Определим коэффициент шунта:


(4.20)

(4.21)

Выходное напряжение подается на дополнительный усилитель и специальное устройство, которое осуществляет гальваническую развязку силовой цепи от системы управления.

Самым распространённым датчиком обратной связи по скорости в регулируемом электроприводе является тахогенератор. Обратная связь по скорости необходима для создания широкорегулируемого электропривода, поскольку статизм разомкнутой электромеханической системы имеет недопустимо большое значение в нижнем диапазоне регулирования.

Однородность тока тахогенератора и двигателя создаёт определённые удобства при эксплуатации привода, поэтому в подавляющем большинстве случаев применяют тахогенераторы постоянного тока. Стремление уменьшить обратные пульсации требует встройки тахогенератора в двигатель и установки его на якорь электродвигателя. В современных моделях используют тахогенераторы с возбуждением от постоянных магнитов.

Передаточная функция тахогенератора соответствует инерционному звену первого порядка:

(4.22)

где

-коэффициент усиления тахогенератора;

-постоянная времени тахогенератора.

Однако постоянная времени тахогенератора невелика (

с) и часто в расчетах подобной величиной пренебрегают. В этом случае тахогенератор представляется безинерционным звеном с передаточной функцией:

, (4.23)

Величину коэффициента усиления тахогенератора можно определить по следующей формуле:

(4.24)

где

-номинальное напряжение на якоре тахогенератора;

-номинальная скорость тахогенератора

(4.25)

об/мин

Двигатель имеет тахогенератор типа ТС-1, с закрытым встроенным исполнением. Возбуждение тахогенератора от постоянных магнитов. Крутизна напряжения 0,033

, нагрузочное сопротивление не менее 2 кОм. Допустимые кратковременные перегрузки по току при номинальном потоке возбуждения:

в течении 60 секунд,

в течении 10 секунд.

4.4 Время разгона двигателя

Найдем момент инерции шнека:

(4.23)

где d-диаметр шнека (d=0,9 м);

l-длина шнека (l=2,7 м);

-плотность стали (
);

i-передаточное число редуктора (i=16)

(4.24)

Суммарный момент инерции на валу двигателя:

(4.25)

где

–момент инерции двигателя (
);

(4.26)

Время разгона двигателя найдем по формуле:

(4.27)

с

где

–дополнительный момент при пуске;

-момент на валу двигателя (
).

Дополнительный момент при пуске:

, (4.28)

где

–коэффициент перегрузочной способности электродвигателя (
)

(4.29)

Таким образом, нормальное время разгона системы до номинальной скорости составляет 8, 89 с.


5 УПРАВЛЯЕМЫЙ ВЫПРЯМИТЕЛЬ

Выпрямление предназначено для преобразования переменного тока в постоянный, и заключается в том, что нагрузка циклически переключается с одной фазы источника переменного напряжения на другую. Такое переключение осуществляется вентилями и называется коммутацией [6].

В управляемом выпрямителе открытие очередного вентиля в общем случае производится со сдвигом на угол регулирования

по отношению к точке естественного открытия (рисунок диаграмма напряжений). Поэтому в интервале 0
проводит вентиль, у которого потенциал анода ниже, чем у вентиля который открывается при угле
.

Задерживая момент открытия вентиля по отношению к моменту естественного открытия можно уменьшать среднее значение выпрямленного напряжения. Значит, можно автоматически управлять выпрямленным током или напряжением, и таким образом, получить регулировочную характеристику, необходимую для наших условий, для регулирования скорости двигателя.