Смекни!
smekni.com

Анализ переходных процессов в электрических цепях (стр. 1 из 3)

Федеральное агентство по образованию

Белгородский государственный университет

Факультет компьютерных наук и телекоммуникаций

Кафедра математических методов и информационных технологий

В экономике и управлении

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

По дисциплине: “Основы теории цепей”

на тему: “Анализ переходных процессов в электрических цепях”


Содержание

Введение

1. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

1.1 Общие сведения

1.2 Классический метод расчета

1.3 Операторный метод расчета

2.РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

2.1 Определение начальных и конечных условий в цепях с ненулевыми начальными условиями

2.1.1 Расчёт начальных условий ПП при

2.1.2 Расчёт начальных условий ПП при

2.1.3 Расчёт конечных условий

2.2 Определение переходных процессов классическим методом

2.3 Построение графиков

2.4 Расчет графиков переходного процесса

2.5 Обобщенные характеристики цепи

Заключение

Список использованных источников


Введение

Нестационарные явления играют важную роль в работе многих устройств, применяемых в современной радиотехнике и электронике. Инженеру по направлению «Телекоммуникация» в своей повседневной деятельности приходится постоянно соприкасаться с переходными процессами и прохождением сигналов через линейные электрические цепи. Данная курсовая работа посвящена изучению переходных процессов.

Основной целью работы является приобретение навыков использования теоретических знаний на практике, при расчете переходных процессов, происходящих в линейных электрических цепях.

Пояснительная записка содержит теоретическую информацию, необходимую для анализа переходных процессов. Среди всех существующих методов расчета переходных процессов наибольшее внимание в данной записке уделено операторному методу анализа. В практической части приводится конкретный пример анализа переходных процессов операторным методом, основанный на теоретических знаниях.

В результате чего произведено более глубокое и эффективное изучение материала по теме: «Анализ переходных процессов в электрических цепях», а также освоение новых программ и приложений, требуемых при построении схем, графиков и расчёте формул.


1. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

1.1 Общие сведения

Переходные процессы возникают в электрических цепях при различных воздействиях, приводящих к изменению их режима работы, т.е. при действии различного рода коммутационной аппаратуры, например ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах цепи, при коротких замыканиях отдельных участков цепи и т.д.

Физической причиной возникновения переходных процессов в цепях является наличие в них катушек индуктивности и конденсаторов, т.е. индуктивных и емкостных элементов в соответствующих схемах замещения. Объясняется это тем, что энергия магнитного и электрического полей этих элементов не может измениться скачком при коммутации в цепи.

Переходный процесс в цепи описывается дифференциальным уравнением - неоднородным или однородным, если её схема замещения содержит или не содержит источники ЭДС и тока. Переходный процесс в линейной цепи описывается линейными дифференциальными уравнениями, а в нелинейной – нелинейными.

Для решения линейных дифференциальных уравнений с постоянными параметрами разработаны различные аналитические методы: классический, оперативный, метод интеграла Фурье и другие, которые применяются и для расчета переходных процессов. Наиболее распространенными я являются классический и оперативный методы. Первый обладает физической наглядностью и удобен для расчёта простых цепей, а второй упрощает расчёт сложных цепей.


1.2 Классический метод

Название метода «классический» отражает использование в нем решений дифференциальных уравнений с постоянными параметрами методами классической математики. Классический метод основан на составлении системы дифференциальных уравнений, которым должны удовлетворять напряжения и токи в цепи, рассматриваемые как неизвестные функции времени, с последующим нахождением ее общего решения и на последнем этапе определением таких значений постоянных общего решения, которые удовлетворяют начальным условиям каждой конкретной задачи.

Для расчета переходных процессов классическим методом необходимо составить систему уравнений на основе законов Кирхгофа, Ома, электромагнитной индукции и т.д., описывающих состояние цепи после коммутации, и исключением переменных получить одно дифференциальное уравнение, в общем случае неоднородное относительно искомого тока или напряжения.

1.3 Операторный метод анализа переходных процессов

Если для классического метода анализа колебаний в линейных электрических цепях с сосредоточенными элементами при произвольных воздействиях сводится к решению неоднородной системы обыкновенных линейных дифференциальных уравнений при заданных начальных условиях, то для аналитического решения этих уравнений в теории электрических цепей нашли широкое применение операторные методы. Операторный метод анализа позволяет сводить линейные дифференциальные уравнения к более простым алгебраическим уравнениям что в ряде случаев упрощает расчеты. Его идея заключается в том, что расчет переходного процесса переносится из области функций действительной переменной (времени t) в область функций комплексной переменной р. Такое преобразование называется прямым.

В настоящее время операторные методы связывают с применением преобразования Лапласа:

,

где f(t) – однозначная функция времени, называемая оригиналом; F(p) – функция комплексной переменной р, называемая лапласовым изображением.


2. РАССЧЁТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

2.1 Определение начальных и конечных условий в цепях с нулевыми начальными условиями

В приведенной схеме (рисунок 2.1) определить начальные и конечные условия для всех токов и напряжений в цепи с нулевыми начальными условиями. Результаты вычислений внести в таблицу.

Данные для рассчета приведены в таблице 2.1:

Таблица 2.1

R1, Ом R2, Ом С, Ф С1, Ф L, Гн L1, Гн Е, В
4 12 1/12 - 6/5 - 8

Рис. 2.1 Схема индивидуального варианта.

Решение.

2.1.1 Начальные условия

Переходной процесс в схеме начинается в момент включения ключа К. До этого момента времени все токи и напряжения равны нулю.


2.1.2 Расчёт начальных условий

.

Изобразим эквивалентную схему цепи для времени

. Так как это цепь с нулевыми начальными условиями, то индуктивность
заменим разрывом, а емкость – перемычкой (рисунок 2.2).

Рис. 2.2 Эквивалентная схема цепи для времени

.

В этой схеме

;
.

Тогда по закону Ома:

.

Напряжения на сопротивлениях R1 и R2 :

,

.

Тогда напряжение на индуктивности:

.

Контроль вычислений.

Формулы для контроля вычислений:

;
;
.

Тогда:

1-ый закон Кирхгофа выполняется
2-ой закон Кирхгофа для 1-го и 2-го контуров выполняется.

2.1.3 Расчёт конечных условий

После окончания переходного процесса все токи и напряжения в схеме (рисунок 2.1) будут постоянными. Тогда ёмкость Cв эквивалентной схеме заменяется разрывом, а индуктивность L перемычкой (рисунок 2.3).