Световой пучок, идущий от источника S поляризован под углом 45° к оптическим осям
и призмы. K – конденсор, D – призма полного внутреннего отражения, P1 и P2 – поляроиды. О – проектирующий объектив, Э – экран.Вычислим начальную разность хода. Рассмотрим общий случай, когда центр кривизны зеркала не расположен в призме ("призма не в центре"). Пусть N – есть точка, в которой ось О пересекает призму. L – длина отрезка СN. Падающий луч в точке A разделяется на два луча 1 и 2. Лучи 1 и 2, образующие между собой угол, падают на зеркало в точках L1 и L2. Затем лучи направляются снова к призме и их мнимые продолжения сходятся в точке A` – изображение точки А по отношению к зеркалу M. На рис. 5.1 L – отрицательная величина. Лучи 1 и 2 пересекают призму второй раз соответственно в точках u1 и u2 и каждый из них отклоняется еще раз на угол q/2. Лучи выходят из призмы слегка расходящимися. В приближении Гаусса можно показать, что мнимые продолжения лучей сходятся на зеркале, в точке L середины L1L2. Лучи 1 и 2 проходят через фокусирующий объектив и сходятся на экране в точке L`, сопряженной с L по отношению к объективу О.
Начальная разность хода D между лучами 1 и 2 после их второго пересечения призмы равна сумме разности dbоптических длин в воздухе от точки A до точки L` и разности dnоптических длин в призме. Согласно свойству идеальной оптической системы db=0. Поэтому для получения D достаточно вычислить dn. Пусть u и T есть точки, в которых соответственно прямая LA` и радиус LC пересекает призму. От вершины зеркала направим ось OX перпендикулярно к средней плоскости П призмы. Пусть x– абсцисса плоскости П, x – абсцисса точки L; x(A), x(u) и x(T)= -xx/R - абсциссы точек А, u и T. В соответствии с формулой для разности оптических путей D,
D= q(x-x), (5.1)
Имеем
dm = q[x(A)-x]+ q[x(u)-x].
В приближении Гаусса точка Т находится в середине отрезка Au, следовательно
D = q[x(A)+x(u)-2x] = -2q[x-x(T)] = -2q(x+zx/R). (5.2)
Этот результат не зависит от направления оси Ox. Разность хода в точке L` или в точке L не зависит от положения точки А в призме, т. е. положения светящейся точки источника. С широким источником света имеем, следовательно, полосы, локализованные на зеркале. Так как D зависит лишь от x, то полосы прямолинейны и перпендикулярны Ox.
Когда призма находится не в центре z¹0, то интерферометр настроен на полосы конечной ширины. Когда z=0, разность хода D постоянна по всему полю наблюдения. С немонохроматическим источником за анализатором наблюдается однородный свет. Цвет зависит от положения средней плоскости призмы. Следовательно, когда "призма в центре", интерферометр настроен на бесконечную полосу.
Исследуемый объект помещается перед зеркалом как можно ближе к нему. Основным недостатком интерферометра со сферическим зеркалом является то, что исследуемый объект находится в непараллельном световом пучке. Несовпадение светового пучка с самим собой при падении его на зеркало и после отражения от него может быть устранено использованием полупрозрачного зеркала за счет значительного (примерно в 4 раза) уменьшения освещенности.
Пусть сферическое зеркало интерферометра имеет R=400 см, а расстояние между фокусами светового пучка - 2 см. Если расстояние между зеркалом и объектом составляет 10 см, то расхождение точек встречи луча с объектом составляет 0,05 см. Во многих случаях такое смещение, если его направить в сторону наименьшего изменения толщины неоднородности, не вносит заметной ошибки. В этих условиях ошибка в основном будет вызываться отклонением луча в неоднородности.
Используя линзу и плоское зеркало или вогнутое и плоское зеркало, можно получить такой автокомпенсационный интерферометр, в котором исследуемый объект будет находиться в параллельном пучке. Интерферометр, схема которого приведена на рисунке 1, можно преобразовать так, что световой пучок будет проходить через исследуемый объект 4 раза и, тем самым, чувствительность интерферометра будет повышена еще в два раза.
II. Юстировка и настройка поляризационных интерферометров
Юстировка автокомпенсационных интерферометров осуществляется согласно "правилу равных освещенностей" (см. лабораторную работу №4 "Поляризационный интерферометр сдвига на базе теневого прибора Теплера ИАБ-458" данного описания).
6. Изучение работы и снятие характеристик газового лазера
Лабораторная работа знакомит студентов со свойствами излучения оптического квантового генератора работающего на смеси газов Не-Ne, применяемого в качестве источника света в оптических установках.
Такой источник световой энергии состоит из активной среды, обеспечивающей усиление оптического сигнала, и резонатора. Последний создает положительную обратную связь, необходимую для генерации. Свойства излучения лазера - монохроматичность, направленность, когерентность - обусловливаются свойствами как активной среды, так и резонатора. Характеристики отдельно взятых резонатора или активной среды существенно отличаются от соответствующих характеристик лазера.
1. для того чтобы уяснить себе, как работает газовый лазер, сначала рассмотрим упрощенную атомную систему, в которой возможны лишь два состояния: невозбужденный (основной) уровень, обозначим его 1 (см. рис. 6.1) и возбужденный уровень 2.
При температуре 0oК все атомы такой системы находятся на первом уровне, а при повышении температуры начинает заселяться и уровень 2, и чем больше температура, тем больше атомов перейдет с уровня 1 на уровень 2. Обозначим N1 - число атомов в единице объема на уровне 1, N2 - число атомов в единице объема на уровне 2. В случае термодинамического равновесия с окружающей средой при температуре ToK распределение атомов по состояниям подчиняется закону Больцмана:
, (6.1)где hn=E2 - E1,
g1, g2 - кратности вырождения уровней 1 и 2 соответственно.
Естественно, что часть атомов с уровня 2 будет спонтанно переходить на уровень 1 и, если переход 2®1 излучательный, то появится спонтанное излучение. Если на уровне 2 находится N2 атомов, то полное число переходов в секунду с уровня 2 на уровень 1 будет N2A21, где A21 - вероятность перехода с уровня 2 на уровень 1.
Заметим, что это излучение некогерентно: фазы электромагнитных колебаний, излученных разными атомами, не связаны между собой.
2. Теперь представим себе, что на нашу атомную систему падает извне излучение с плотностью rv и частотой, удовлетворяющей соотношению
hn = E2 - E1.
В этом случае, кроме спонтанных переходов, появляются, еще и вынужденные (индуцированные) переходы с уровня 2 на уровень 1 и полная вероятность того, что атомная система перейдет с уровня 2 на уровень 1 (за единицу времени), будет
r21 = A21 + rvB21, (6.2)
где B21 - вероятность индуцированного перехода.
Заметим, что вынужденное излучение уже не является хаотическим, его фаза будет совпадать с фазой внешнего излучения. Совпадают также и остальные характеристики: волновые векторы, поляризации и частоты.
Попадающее в вещество внешнее излучение вызывает также и переходы с уровня 1 на уровень 2 с вероятностью r12 = rvB12. Между величинами А и В (их называют коэффициентами Эйнштейна) существует связь
g1B12 = g2B21,
(6.3)Внешнее излучение, попадая в вещество, будет поглощаться, и нарушать термодинамическое равновесие атомной системы. Рассмотрим взаимодействие такого ансамбля атомов с излучением на частоте n. Число переходов в секунду с уровня 2 на уровень 1 будет (A21+ rvB21)N2, а число переходов с уровня 1 на уровень 2 rvB12N1.
Потери падающего пучка электромагнитного излучения будут составлять: (N1- N2)rvB12 (6.4) квантов в секунду, и при N1- N2<0 излучение при прохождении через вещество будет ослабляться. Испущенные A21N2 квантов в секунду дадут рассеянное (по направлению) излучение и поэтому в формуле (6.4) не фигурируют. Интенсивность излучения будет убывать внутри вещества по закону:
где JO - интенсивность на входе в вещество,
Kn - коэффициент поглощения на частоте n.
В газовом разряде возбуждается линейчатый спектр, и поглощение происходит лишь в пределах ширины спектральных линий. Контур их чаще всего определяется доплеровским уширением.
Типичная зависимость Kn от частоты показана на рис. 6.2. существует связь между площадью под кривой Kn(n) и разностью населенностей уровней [см. 4]:
, (6.6)где
- интегральное (по частотам) поперечное сечение поглощения одного атома.Таким образом видно, что интегральный коэффициент поглощения атомной системы будет положительным при N2<N1, что обычно имеет место, так как населенность верхних уровней атомной системы (если не принимать специальных мер), всегда меньше населенности основного уровня.