Смекни!
smekni.com

Оптические методы исследования процессов горения (стр. 1 из 11)

Министерство общего и профессионального образования Российской Федерации

Чувашский государственный университет им. И.Н. Ульянова

ОПТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ГОРЕНИЯ

А.Е. Давыдов

Чебоксары 2000 - 2007


1. ПРЯМОТЕНЕВОЙ МЕТОД

Прямотеневой метод позволяет приближенно определить вторую производную показателя преломления. Поэтому он нашел широкое применение при изучении явлений, связанных с резким изменением показателя преломления n, таких как ударные волны, зоны горения предварительно перемешанной горючей смеси, контроля оптических стекол.

I. Схема теневого метода

Один из наиболее простых вариантов установки для теневого метода приведен на рис. 1.1.

Здесь L - точечный источник света, Э - экран. Между ними помещается исследуемая неоднородность S. Свет от источника L при прохождении через шлиру отклоняется.

Пусть световой луч LA испытывает при прохождении через оптическую неоднородность отклонение на угол e (рис. 1.1). Вследствие этого он попадает не в точку А`, а в точку А``, которая удалена от А` на расстояние Dа=g×tge. Но так как угол e мал (а только такие случаи и имеет смысл исследовать теневым методом), то tge@e, и поэтому

Dа=e×g, (1.1)

где g - расстояние от оптической неоднородности до экрана.

Смещение точки падения луча на экране вызывает изменение освещенности, которое и указывает на наличие неоднородности на пути лучей. Относительное изменение освещенности экрана, то есть чувствительность теневого метода, пропорциональна отношению Dа/d`, где Dа - смещение точки падения луча на экране, d` - размер теневого изображения неоднородности.

Выясним, как зависит это отношение от параметров теневой установки. Из рис. 1.1 имеем:

или
(1.2)

где d - размер неоднородности.

Поэтому

. (1.3)

Отношение e/d зависит только от характера и размера неоднородности, и поэтому мы его можем считать заданной величиной.

Обозначим в (1.3) g/h через x. Тогда


. (1.4)

Функция f(x)=x(1-x) имеет максимум при x=0.5, то есть чувствительность максимальна при g/h=0.5 или при g=h/2.

Следовательно, для увеличения чувствительности теневого метода необходимо:

а) увеличить расстояние h от источника света до экрана насколько позволяет помещение;

б) помещать оптическую неоднородность приблизительно в середине между источником света и экраном Э.

Однако качество теневой картины на экране определяется не только указанным отношением Da/d`, но и другими факторами, например, не резкостью, вызванной дифракцией света на краю неоднородности, не резкостью, обусловленной конечными размерами источника света и необходимостью установки больших габаритов.

Исходя из вышеизложенного следует, что исследование фазовых объектов прямотеневым методом крайне затруднительно, поэтому для исследования оптических неоднородностей в данной работе используется обращенный теневой метод.

II. Обращенный теневой метод

Рассмотрим его оптическую схему, приведенную на рис. 1.2.

В качестве источников света в обращенном теневом методе обычно используются источники света с высокой яркостью. Эти источники можно использовать непосредственно сразу или для получения большой резкости теневой картины получить вначале с помощью конденсора промежуточное изображение на точечной диафрагме.


Свет от источника S проходит через конденсорную линзу О, диафрагму D и между линзами K1 и K2 образуется параллельный пучок. Неоднородность можно помещать в сходящемся, расходящемся и в параллельных пучках. Чувствительность метода может быть выражена формулой

(1.5)

Из формулы (1.5) следует, что чувствительность, то есть отношение Da/d` теоретически может расти до бесконечности, если сделать сколь угодно малой величину теневого изображения оптической неоднородности на экране при постоянном значении Da. Если сохранить g постоянным и увеличивать отношение h/q, то чувствительность возрастает от 0 для h=g до значения eg/d при h®¥. h®¥ означает, что оптическая неоднородность просвечивается параллельным пучком света. Поэтому изображение ее равно размерам самой неоднородности. Если же оптическую неоднородность просвечивать сходящимся пучком света, оставляя постоянным g, то изображение шлиры будет меньше самой неоднородности. Так как при этом Da остается постоянным, то чувствительность существенно увеличивается. Но для получения сходящегося пучка лучей необходимо оптическое оборудование, так что основное преимущество теневого метода теряется.

В заключении отметим основные преимущества и недостатки теневого метода.

Основным преимуществом теневого метода является чрезвычайная простота установки, которая не требует почти никакого оптического оборудования, и возможность исследования объектов, имеющих значительные размеры.

Недостатком теневого метода является невозможность проведения точных количественных исследований структуры оптической неоднородности.


2. МЕТОД ТЕПЛЕРА

Метод исследования оптических неоднородностей, основанный на измерении угловых отклонений света e~ grad n называется методом Теплера или шлирен-методом. Оптические установки, предназначенные для работы методом Теплера, называются приборами Теплера. Они встречаются в самых разнообразных вариантах в зависимости от их назначения.

I. Принципиальная схема прибора Теплера

Принципиальная схема прибора Теплера приведена на рис. 2.1.

Источник света L представляет собой равномерно ярко светящуюся площадку MN, ограниченную по линии М прямолинейным краем. В верхней части рис. 2.1 слева приведен вид источника света L по направлению оптической оси. Длиннофокусный объектив К, исправленный на сферическую и хроматическую аберрации, создает в плоскости М`N` изображение источника L`. Диаметр объектива К должен быть больше размеров исследуемой неоднородности, которая помещается на пути света между объективом К и плоскостью М`N`. Острый край ножа Фуко должен располагаться строго параллельно прямолинейному краю изображения источника света. В верхней части рис. 2.1 справа приведено относительное расположение диафрагмы В и изображения источника света L`. Ширина незакрытой части изображения источника света обозначена через а`. Объектив О дает изображение объектов, находящихся в плоскости исследуемой шлиры S, на экране Э. Соответствующим подбором объектива О можно в известных пределах изменять размер изображения объектов на экране Э и выбрать подходящую для каждого случая освещенность. Обозначения расстояний между различными деталями установки приведено на рис. 2.1.

При отсутствии на пути света шлиры S и если нож Фуко не задерживает лучи в плоскости М`N`, экран Э будет освещен равномерно во всех точках. Освещенность экрана в этом случае обозначим через Е. Если ножом Фуко, перемещая его перпендикулярно оптической оси, задержать часть лучей, падающих на экран, то при отсутствии шлиры равномерность освещения экрана не нарушится, но величина освещенности, пропорциональная а`, уменьшится и станет равной Е`.

При наличии шлиры часть лучей света отклонится на некоторый угол e и вызовет смещение изображения источника света относительно начального изображения, создаваемого не отклоненными лучами на Dа`. На эту же величину оно будет смещено и относительно острого края ножа. Поэтому соответствующие места изображения шлиры получат больше или меньше света в зависимости от того, в какую сторону происходит смещение: если вверх, то освещенность будет больше, если вниз, то меньше, чем освещенность свободного поля при данном положении острого края ножа.

В отличие от теневого метода в шлирен-методе более освещенные и менее освещенные по сравнению со свободным полем части изображения неоднородности соответствуют тем местам шлиры, где происходит отклонение света, но только отклонения имеют противоположные направления.

Так как изменение освещенности экрана DЕ пропорционально смещению изображения источника света Dа`, а последнее однозначно зависит от угла отклонения света e, то по изменению освещенности точки на экране можно определить углы отклонения и, следовательно, grad n в соответствующей точке неоднородности.

Чувствительность метода Теплера

Наличие неоднородности на пути лучей в приборе Теплера выявляется по изменению освещенности экрана, что можно регистрировать, например, фотоэлементом. В этом случае под чувствительностью метода Теплера следует понимать наименьшее абсолютное изменение освещенности (соответствующее наименьшему углу отклонения), которое можно еще зафиксировать с достаточной точностью.

Если же экран наблюдается визуально или фотографируется, то под чувствительностью метода Теплера понимается относительное изменение освещенности экрана a=DЕ/Е, которое еще можно хорошо различить. Изменение освещенности экрана происходит вследствие смещения изображения источника света, создаваемого отклоненными лучами, относительно острого края диафрагмы. Это смещение Dа` пропорционально углу отклонения света в шлире:

Dа`=e×g,

где g - расстояние от неоднородности до плоскости изображения источника света. Тогда на основании выражения для вычисления освещенности экрана, полученного Г.Шардиным

Е+DЕ=hВb`(a`+Dа`)/t2, (2.1)

где h - коэффициент, учитывающий потери в стекле объектива К на отражение и поглощение,