Смекни!
smekni.com

Расчет электроснабжения цеха "Владивостокского бутощебёночного завода" (стр. 1 из 5)

Введение

Системой электроснабжения (СЭС) называют совокупность устройств для производства, передачи и распределения электроэнергии. Системы электроснабжения промышленных предприятий создаются для обеспечения питания электроэнергией промышленных приемников, к которым относятся электродвигатели различных машин и механизмов, электрические печи, электролизные установки, аппараты и машины для электрической сварки, осветительные установки и др. Задача электроснабжения промышленных предприятий возникла одновременно с широким внедрением электропривода в качестве движущей силы различных машин и механизмов.

В данном курсовом проекте приведен расчет электроснабжения цеха «Владивостокского бутощебёночного завода». Данные для проекта были взяты на производственной практике и, впоследствии, он также будет использован в дипломном проектировании.


1. Выбор освещения

1.1 Расчет освещения

Расчет освещения производим точечным методом. Метод применяется при расчете общего равномерного, общего локализованного и местного освещения помещений, когда имеются или отсутствуют затенения; при любом расположении освещаемых поверхностей, но как правило, только при светильниках прямого света; при расчете наружного освещения на минимальную освещенность.

Рис. 1. Схема расположения светильников

Принимаем по справочнику [1] тип светильника: НСП17.

Технические данные светильника НСП17:

Рл=1000 Вт (ЛН),

Фл=16189 лм,

,

cв=1.

По справочнику [1] принимаем минимальную горизонтальную освещенность: Еmin=300 лк.

Длина освещаемого помещения L=60 м.

Высота освещаемого помещения H=8 м.

Принимаем коэффициент запаса Кз=1,3 (коэффициент запаса учитывает старение ламп и запылённость светильников).

Задаемся расстоянием между светильниками l=2 м.

Определяем расстояние от нити накаливания до освещаемой поверхности:

h=H-b, м, (1.1.1)

где H– высота потолка в цехе, м; b – расстояние от потолка до светильника, м

h=H-b=8–0,3=7,7 м.

Угол

:

,

,

.

Сила света под углом

:

cos

=cos 7
=0,99, по справочнику [1] сила света под этим углом при l= 2 м равна Iα=825 кд).

Определим горизонтальную освещенность в точке К1:

, лк, (1.1.2)

где n – число светильников равноудаленных от освещаемой точки, шт.; С – поправочный коэффициент; Ia– сила света лампы под углом a, кд; Кз – коэффициент запаса (1,2¸1,5); a– угол между вертикальной и наклонной составляющей силы свете (см. рис. 1), град.; h – высота подвеса светильника, м.

Поправочный коэффициент C:

, лм, (1.1.3)

где Фл – световой поток лампы, лм.

лм.

Отсюда горизонтальная освещенность:

лк.

Расчетная горизонтальная освещенность в точке К1 удовлетворяет условию Ег=336 лк < Emin=300 лк.

Определим необходимое число светильников:

, шт., (1.1.4)

шт.

Принимаем количество светильников nсв=30 шт.

1.2 Выбор осветительного кабеля по условию допустимого нагрева

Принимаем ЩО с тремя АВ. Для каждого АВ 10 ламп.

Расчетный ток в осветительном кабеле:

Для АВ 1:


, А, (1.2.1)

где Pл – мощность одной лампы, Вт; U – напряжение питающей сети, В; cosjсв – коэффициент мощности светильника, для ламп накаливания cosjсв = 1.

A.

Аналогично для других АВ.

Принимаем сечение кабеля S=10 мм2, Iдоп=70 А (из справочника [2]).

Принимаем для питания осветительной установки кабель марки КРПСН 3

4, (r0=1,840 Ом/км; х0=0,092 Ом/км) [3].

Выбираем для освещения трансформатор ТМ-25

Технические данные трансформатора ТМ – 25:

Sном=25 кВА,

Uвн=6; 10 кВ,

Uнн=0,23; 0,4; кВ,

Потери:

Pх.х.=0,135 кВт,

Pк.з.=0,6 кВт,

Uк.з.=4,5%,

Iх.х.=3,2%.

1.3 Проверка осветительной сети по потере напряжения

Потеря напряжения на наиболее удаленной лампе не должна превышать 2,5%.

Находим допустимую величину минимального напряжения на наиболее удаленной лампе:


, В, (1.3.1)

В.

Допустимая потеря напряжения в осветительной сети:

, В, (1.3.2)

В.

Расчетная потеря напряжения в осветительной сети:

, В, (1.3.3)

где

– потеря напряжения в осветительном трансформаторе;
– потеря напряжения в кабеле.

, В, (1.3.4)

где β – коэффициент загрузки трансформатора (принимаем

=0,85);

Uа – относительное значение активной составляющей напряжения к.з. в трансформаторе, %;

Uр – относительное значение реактивной составляющей напряжения к.з. в трансформаторе, %.

, %, (1.3.5)

, %.

, %, (1.3.6)

, %.

Окончательно можно записать:

=8,55, В.

Потеря напряжения в осветительном кабеле:

, В, (1.3.7)

где Rk – активное сопротивление жил кабеля, Ом; Xk – индуктивное сопротивление жил кабеля, Ом.

, Ом, (1.3.8)

, Ом, (1.3.9)

где r0 – активное сопротивление жил кабеля, Ом/км (r0=1,84 Ом/км); х0 – индуктивное сопротивление жил кабеля, Ом/км (х0=0,092 Ом/км); L – длина кабеля от трансформатора до светильника, км (L=0,1 км).

, Ом,

Ом.

Окончательно записываем:

В.

Отсюда расчетная потеря напряжения в осветительной сети:

В.

Так как выполняется условие

>
, следовательно, выбранный кабель подходит по потере напряжения.

1.4 Расчет токов короткого замыкания в осветительной сети

, А, (1.4.1)

где Z – сопротивление сети от источника питания (трансформатора) до места к.з., Oм.

, Ом, (1.4.2)

где Rтр. – активное сопротивление трансформатора, Ом; Хтр. –индуктивное сопротивление трансформатора, Ом.

, Ом, (1.4.3)

, Ом, (1.4.4)

, А, (1.4.5)

, А,

, Ом,

, Ом,

, Ом.