Смекни!
smekni.com

Основні магнітні явища: діамагнетизм, парамагнетизм, феромагнетизм (стр. 1 из 4)

ЛЕКЦІЯ №1

ОСНОВНІ МАГНІТНІ ЯВИЩА: ДІАМАГНЕТИЗМ, ПАРАМАТНЕТИЗМ, ФЕРОМАГНЕТИЗМ

1. Крива намагнічування феромагнетика. Магнітні величини

2. Класифікація матеріалів за магнітними властивостями

3. Магнітно-м’які матеріали

4. Низькочастотні магнітно-м’які матеріали

5. Приклади

Всі матеріали, які знаходяться в зовнішньому магнітному полі, намагнічуються. Намагнічування пов’язане з наявністю в атомів, що складають матеріал (або іонів, молекул) мікроскопічних магнітних моментів.

Макроскопічною характеристикою намагнічування матеріалів служить величина намагнічуваності М, яка рівна сумарному магнітному моменту атомів одиниці об’єму.

Встановлено зв’язок намагнічуваності М з напруженістю Н зовнішнього магнітного поля:

М = kmН,

де km– безрозмірний коефіцієнт пропорційності називають магнітною прийнятністю матеріалу.

В залежності від знаку та величини магнітного сприйняття всі матеріали поділяють на діамагнетики, парамагнетики та феромагнетики.

Діамагнетики – матеріали, які намагнічуються протилежно прикладеному полю та послаблюють його, тобто мають km < 0 (від -10-4 до -10-7).

Діамагнетизм присутній всім речовинам (матеріалам) але виражений слабо. До діамагнетиків відносяться інертні гази, неперехідні метали (Be, Zn, Pb, Cu, Ag та ін.), напівпровідники (Ge, Si), діелектрики (полімери, скло та ін.), надпровідники.

Парамагнетики - матеріали, які мають km > 0 (від 10-2 до 10-5) та слабо намагнічуються зовнішнім полем.

Під дією зовнішнього поля магнітні моменти атома отримують переважне орієнтування (парамагнітний ефект), і в кристала з’являється деяка намагнічуваність. До пара магнетиків відносяться метали, атоми яких мають непарну кількість валентних електронів (K, Na, Al та ін.), перехідні метали (Mo, W, Ti, Pt та ін.) з недобудованими електронними оболонками атомів.

Феромагнетики характеризуються великим значенням магнітної сприйнятливості (km >> 1), а також її нелінійної залежності від напруженості поля та температури. Залізо, нікель, кобальт та рідко земельний метал гадоліній мають надзвичайно велике значення km ~ 106. Їх здатність сильно намагнічуватись широко використовується в техніці.

Згідно квантової теорії всі основні властивості феромагнетиків обумовлені доменною структурою їх кристалів.

Домен – область кристалу розміром 10-4 – 10-6 м, де магнітні моменти атомів орієнтовані паралельно визначеному кристалографічному напрямку.

(Між доменами є перехідні шари (доменні стінки) шириною 10-7 – 10-8 м, всередині яких спінові магнітні моменти поступово повертаються.)

КРИВА НАМАГНІЧУВАННЯ ФЕРОМАГНЕТИКА. МАГНІТНІ ВЕЛИЧИНИ

діамагнетизм феромагнетизм парамагнетизм гістерезис

Намагнічуваність монокристала феромагнетика анізотропна. Кристал заліза в напрямку ребра куба < 100 >намагнічується до насичення Мs при значно меншій напруженості поля

при намагнічуванні в напрямку діагоналі куба < 111 >або в інших кристалографічних напрямках. Отже, в монокристалі заліза є шість напрямків легкого намагнічування, повернуті один відносно одного на 90 або 1800, за якими і орієнтуються вектори намагнічуваності доменів.

Питома енергія (Дж/м3), яку необхідно затратити на перемагнічування з напрямку легкого намагнічування в напрямок важкого намагнічування, називається константою кристалографічної магнітної анізотропії – К.

Магнітна індукція – густина магнітного струму визначається як сума зовнішнього Н та внутрішнього М магнітних полів:

В = μо (Н + М),

де магнітна стала μо = 4π·10-7 Гн/м.

Інтенсивність росту індукції при збільшенні напруженості намагнічуваного поля характеризує магнітна проникність μ. (Вона визначається як тангенс кута нахилу до первинної кривої намагнічування В = f(Н)).

Процеси намагнічування повністю необоротні. Якщо магнітне поле, доведене до +Нs, зменшувати до нуля, то індукція збереже певне значення Вr, яке називається остаточною індукцією. Намагнічування полікристалу шляхом оборотного знаку зменшує індукцію В, та при напруженості поля Нс індукція падає до нуля. Напруженість магнітного поля рівна Нс, називається коерцитивною силою.

Крива намагнічування та форма петлі гістерезисна – найважливіші характеристики феромагнетика, так як вони визначають основні його константи, а отже, і області застосування.

При технічному намагнічуванні розмір домена l в напрямку магнітного поля змінюється на величину λ = ± Δ l/l, яка називається коефіцієнтом лінійної магнітострикції. Величина та знак цього коефіцієнту залежать від природи феромагнетика, кристалографічного напрямку та степені намагніченості.

При намагнічуванні в полях Н > Нs збільшується і об’єм кристалу. Відносна зміна об’єму називається коефіцієнтом об'ємної магнітострикції парапроцеса λs. Зазвичай він невисокий, однак, у деяких сплавів, що називаються інварами, досягає значних величин.

КЛАСИФІКАЦІЯ МАТЕРІАЛІВ ЗА МАГНІТНИМИ ВЛАСТИВОСТЯМИ

При розробці магнітних матеріалів з заданими властивостями слід враховувати, що магнітні характеристики Ms, Bs, λs, K залежать тільки від хімічного складу феромагнетика, а характеристики μ, Нс, Вr, Нs залежать також і від виду термічної обробки, так як являються структурно чутливими.

Легко намагнічуються (мале значення Hs) хімічно чисті феромагнітні метали та однофазні сплави на їх основі. Кількість кристалічних дефектів в них повинна бути мінімальною.

Для намагнічування є небажаними дислокації та остаточні напруження, для видалення яких в кінці технологічного процесу застосовують термічну обробку – відпал.

Намагнічування феромагнетика проходить тим легше, чим менше К та λs. Зменшити їх вплив можна шляхом зміни хімічного складу феромагнетика. Якщо виготовляти сплави з компонентів, що утворюють тверді розчини, один з яких має позитивну, а інший негативну константу магнітної анізотропії, то для деяких сплавів К = 0, наприклад, в сплавах системи Fe – Ni.

МАГНІТНО-М’ЯКІ МАТЕРІАЛИ

Магнітно-м’які матеріали намагнічуються в слабких магнітних полях (Н ≤ 5·104 А/м) внаслідок великої магнітної проникливості (μн ≤ 88 мГн/м та μmах ≤ 300 мГн/м) та малих втрат на перемагнічування.

Такі матеріали застосовують для сердечників котушок, електромагнітів, трансформаторів, динамо-машин.

Магнітно-м’які матеріали поділяють на низько- та високочастотні.

НИЗЬКОЧАСТОТНІ МАГНІТНО-М’ЯКІ МАТЕРІАЛИ

Низькочастотні магнітні м’які матеріали в свою чергу поділяють на низькочастотні з високою індукцією насичення Вs та низькочастотні з високою магнітною проникливістю μ.

Матеріали з високою індукцією насичення. До них перш за все відносяться залізо, нелеговані та леговані електротехнічні сталі. Завдяки великій магнітній індукції (Bs ≤ 2,15 Тл), малій коерцетивній силі (Нс ≤ 100 А/м), достатньо високій магнітній проникливості (μmax ≤ 79 мГн/м) та добрій технологічності – їх застосовують в електротехніці для магнітних полів напруженістю від 102 до 5·104 А/м.

Найбільший вміст домішок містить технічно чисте залізо. При вмісті 0,02 – 0,04 % С та інших домішок в кількості 0,6 % залізо має достатньо добрі магнітні властивості: Нс = 64 А/м, та μmax = 9 мГн/м. В процесі виготовлення прокату в залізі виникають внутрішні напруження, а в решітці – велика кількість дислокацій. Це погіршує магнітні властивості. Відпал в вакуумі або в водні видаляє дефекти та напруження. Суттєве покращення магнітних властивостей можна отримати після очистки заліза від вуглецю та домішок електролізом. Нелеговані електротехнічні сталі виготовляють тими ж металургійними способами, що і технічно чисте залізо; вміст вуглецю та домішок допускається в тих же кількостях. Промисловість впускає сталі різного сортаменту, в тому числі тонкий лист:

ПРИКЛАД

Нелегована електротехнічна тонколистова сталь

10895

20895

10864

20864

Перша цифра в марці вказує спосіб виготовлення: гарячекатана сталь (1), холоднокатана сталь (2). Друга цифра 0 вказує на низький вміст кремнію (≤0,03%). Третя цифра визначає основну властивість, яку гарантує завод – виробник, а саме: цифра 8 означає коерцитивну силу Нс, а її значення (в А/м) показують дві останні цифри.

Нелеговану сталь застосовують в електротехнічній промисловості.

Електричний опір сталі можна підвищити легуванням кремнієм, який не є дефіцитним. Розчиняючись в залізі, кремній утворює легований твердий розчин. При відпалі кремній сприяє росту кристалів і тим самим трохи зменшує Нс.

Електричний опір продовжує зростати з подальшим збільшенням вмісту кремнію в сталі, але при цьому сильно падають пластичні властивості. Сталі з вмістом кремнію більше 4 % крихкі, погано прокатуються, що ускладнює отримання тонколистового прокату. Для зменшення теплових втрат сердечники з кременистої сталі використовують в вигляді тонких (< 1 мм) листів з про слойкою ізоляції (полімери, оксиди).

ПРИКЛАД

Легована електротехнічна тонколистова сталь

1311

2011

3411

Перша цифра в марці визначає вид прокату та структуру: гарячекатана ізотропна (1), холоднокатана ізотропна (2), холоднокатана анізотропна з кристалографічною текстурою напрямку [100] (3). Друга цифра в марці вказує на вміст Si (в %): 0 – вміст < 0,4 %; 1 – (0,4 – 08%); 2 – (0,8 – 1,8%); 3 – (1,8 – 2,8%); 4 – (2,8 – 3,8 %); 5 – (3,8 – 4,8 %). Третя цифра вказує втрати на гістерезис та теплові втрати при певному значенні В та f. Четверта цифра – код числового значення нормує мого параметра. Чим цифра більша, тим менші питомі втрати.

Після технологічних операцій, необхідних для виготовлення деталей магнітопроводу (різка, штампова та ін.), магнітні властивості сталей погіршуються, тобто зростає коерцитивна сила, а відповідно, і втрати на гістерезис. Для відновлення магнітних властивостей приміняють відпал при температурі нижче температур фазового перетворення (880 – 9000 С) в середовищі, що захищає від окислення та навуглецьовування. Леговані електротехнічні сталі застосовують в електротехнічних виробах, розрахованих на роботу при частотах до f ≤ 400 Гц. Сталі з більш низьким вмістом кремнію використовують для сердечників, які працюють при частотах до 100 Гц та напруженості поля Н ≤ 5·104 А/м. Сталі з підвищеним вмістом кремнію використовують при частотах до 400 Гц, але в слабших полях (Н > 102 А/м).