Пример. Записать в обозначениях Дирака среднее значение физической величины представленной оператором
, если состояние системы характеризуется вектором состояния . (Спектр собственных значений оператора считать дискретным).Среднее значение дискретной случайной величины равно сумме произведений ее возможных значений на их вероятности:
Здесь
- собственные значения оператора , - его собственные векторы и - волновая функция системы в - представлении. Преобразуем выражение для среднего значения, пользуясь свойством скалярного произведенияВ последнем преобразовании использовано условие полноты
Таким образом, в обозначениях Дирака
квантовый представление волновой состояние
3. Преобразование операторов от одного представления к другому
Пусть оператор
задан в координатном представлении и переводит функцию в функцию :Разложим функции
и в ряд по собственным функциям оператора . Спектр собственных значений этого оператора для определенности будем считать дискретным :Совокупность амплитуд
есть волновая функция в -представлении, совокупность амплитуд - волновая функция в -представлении. Подставим разложение (3.3.2) и (3.3.3) в (3.3.1):Умножим левую и правую части этого равенства на
и проинтегрируем по всей области изменения независимых переменных. Знаки суммирования и интегрирования меняем местами. Поскольку собственные функции ортогональны и нормированы, т.е.Вводя обозначение
получаем
Если спектр оператора
непрерывен, имеем аналогичноТаким образом, с помощью набора величин
можно волновую функцию в - представлении, являющуюся совокупностью амплитуд, превратить в волновую функцию в том же представлении. Поэтому совокупность величин является оператором в - представлении. Его можно представить в виде матрицы:Величины
называют матричными элементами. В обозначениях ДиракаИтак, операторы квантовой механики могут быть представлены в матричной форме. Поскольку в квантовой механике применяются только эрмитовы операторы, удовлетворяющие условию, т о.
Такие матрицы называют самосопряженными или эрмитовыми.
Таким образом, каждой физической величине соответствует не один, а множество операторов. Вид оператора данной физической величины зависит от выбора независимых переменных. Зная оператор физической величины в одном представлении, можно найти его в других представлениях. Например, если известен вид оператора в
-представлении, то для получения его в матричной форме в -представлении надо воспользоваться собственными функциями оператора в -представлении в соответствии с формулой (3.3.4). Свойства физической величины (эрмитовость ее оператора, спектр собственных значений, среднее значение и т.д.) не зависят от выбора представления. (Аналогия с принципом относительности Эйнштейна: законы природы инвариантны (неизменны) при переходе от одной инерциальной системы отчета к другой).Пример. Найти матричные элементы оператора в его собственном представлении.
В этом случае
в (3.3.4) – собственная функция оператора :С помощью этого уравнения преобразуем выражение для матричного элемента (3.3.4):
Поскольку собственные функции ортогональны и нормированы, получаем:
. Таким образом, в своем собственном представлении любой оператор в матричной форме является диагональной матрицей, диагональные элементы которой равны собственным значениям этого оператора:Итак, чтобы найти собственные значения оператора, заданного в форме матрицы, нужно привести эту матрицу к диагональному виду.
Пример. Записать среднее значение физической величины, представляемой оператором
, в матричной форме.Пусть в выражении
волновая функция и оператор заданы в координатном представлении. Перейдем к
- представлению. Воспользуемся разложением (3.3.2) функции в ряд по собственным функциям оператора . Подставляя в выражение для среднего значения и меняя местами знаки суммирования и интегрирования, получаемСовокупность
есть матрица с одним столбцом. Совокупность - сопряженная матрица с одной строкой. Поэтому (3.3.8) можно записать как произведение соответствующих матриц: