Смекни!
smekni.com

Элементы теории представлений (стр. 5 из 5)

4. если операторы

и
эрмитовы и некоммутирующие, то оператор
не эрмитов;

5. если оператор

линейный, то оператор
эрмитов;

IV. 1. Найти собственные функции и собственные значения оператора


,

если

,

где

– постоянная величина

2. Найтисобственные функции и собственные значения оператора

(Оператор задан в сферических координатах).

3. Найтисобственные функции и собственные значения оператора

(Оператор задан в сферических координатах).

4. Найти собственные функции и собственные значения оператора

,

если

.

5. Найти собственные функции и собственные значения оператора


V. 1. Вычислить среднее значение

для одномерного гармонического осциллятора, состояние которого описывается функцией

, где

2. Вычислить среднее значение кинетической энергии

линейного гармонического осциллятора, если состояние его описывается функцией

, где

3. Волновая функция состояния частицы имеет вид

,

где

- вещественная функция. Найти средний импульс частицы в этом состоянии.

4. В некоторый момент времени частица находится в состоянии


,

где

и
- постоянные. Найти среднее значение ее координаты
.

5. Найти среднее значение физической величины, представляемой оператором

,

если состояние частицы описывается функцией

.

VI. Определить возможные значения физической величины, представляемой оператором

и их вероятности для системы, находящейся в состоянии:

1.

2.

3.

4.

5.

(Оператор задан в сферических координатах)

Литература

1. Дирак П. Принципы квантовой механики.– М: Наука, 1979.

2. Вакарчук І.О. Квантова механіка: Підручник.– Львів: ЛДУ ім.. І. Франка, 1998.

3. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1983.

4. Давыдов А.С. Квантовая механика. М.: Наука, 1973.

5. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989.

6. Юхновський І.К. Квантова механіка. Київ: Либідь, 1995.

7. Федорченко А.М. Теоретична фізика. Київ: Вища школа, 1993, т. 2.

8. Фок В.А. Начала квантовой механики. М.: Наука, 1976.

9. Шифф Л. Квантовая механика. М.: Из-во иностр. лит., 1959.

10. Мессиа А. Квантовая механика: в 2-х томах, М.: Наука, 1978, т. 1.

11. Иродов И.Е. Задачи по квантовой физике. М.: «Высшая школа», 1991.

12. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М.: Наука, 1981.

13. Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970.

14. Рихтмайер Р. Принципы современной математической физики, М.:1982.


[1] Бор.М. Атомная физика. – М.: Мир, 1965, с 119