Смекни!
smekni.com

Растекание тока в земле при замыкании (стр. 3 из 4)

К числу недостатков резисторного заземления нейтрали сети 6 кВ следует также отнести низкую термическую стойкость бэтелового резистора при его величине 100–400 Ом, так как допустимая длительность замыкания при этом не превышает 1,2 минуты. По истечении этого времени присоединительный трансформатор, в нейтраль которого включен резистор, должен быть отключен и сеть переводится в режим с изолированной нейтралью со всеми присущими ей недостатками.

Самым распространенным в настоящее время методом предотвращения аварийных последствий от однофазных замыканий в рассматриваемых сетях является заземление нейтрали сетей через настроенные индуктивности (ДГК), которые, сохраняя преимущества сетей с изолированной нейтралью, призваны улучшить условия работы электрооборудования при однофазных замыканиях на землю. Такое улучшение предполагается за счет существенного снижения скорости восстановления напряжения на поврежденной фазе после погасания дуги и уменьшения тока в месте замыкания на землю до уровня активной составляющей и высших гармоник. Вследствие этого, происходит самопроизвольное погасание дуги, а, следовательно, сокращение объемов разрушений, связанных с термическим действием заземляющей дуги, а также снижением кратности перенапряжений до безопасной величины, так как появляются пути для истекания на землю статических зарядов с емкости элементов сети здоровых фаз. Однако для достижения таких результатов степень расстройки катушки не должна превышать пределов

.

При установке в сетях 6–35 кВ катушки снижается скорость восстановления напряжения на больной фазе после погасания дуги. При точной настройке катушки в резонанс время восстановления напряжения до номинального составляет несколько секунд. За это время прочность изоляции в месте повреждения успевает восстановиться. Но этот процесс имеет и отрицательные стороны, потому что все это время на здоровых фазах держится напряжение порядка (1,9–2,3) Uф. Относительная длительность существования таких перенапряжений может привести к пробою изоляции в этих фазах, особенно в старых сетях с плохой изоляцией.

В реальных сетях настроить катушку точно в резонанс невозможно, так как индуктивность катушки регулируется дискретно. Допускается расстройка катушки v<5%. При расстройке в 5% восстанавливающееся напряжение на поврежденной фазе имеет характер биений. Огибающая напряжения достигает максимума, составляющего 1,78Uф. В дальнейшем огибающая напряжения стремится к Uф. Прочность изоляции к моменту максимума биений может восстановиться, но напряжение 1,78Uф на больной фазе может вызвать повторный пробой изоляции с последующей кратностью перенапряжений 2,89Uф. При расстройке более 25% кратность перенапряжений такая же, как в сетях без установки дугогасящей катушки. При этом кратность перенапряжений при перекомпенсации немного меньше, чем при недокомпенсации.

При наличии несимметрии настройка установленной в сети ДГК в резонанс ведет к резкому увеличению напряжения смещения нейтрали в нормальном режиме работы сети. Причем несимметрия емкостей фаз относительно земли сильнее влияет на величину смещения нейтрали, чем несимметрия активных сопротивлений изоляции.

На основе проведенных исследований кафедрой «Электрические станции» Донецкого национального технического университета было предложено для устранения выявленных недостатков, вызванных смещением нейтрали сети и длительным существованием повышенных напряжений в режимах замыкания фазы на землю, параллельно ДГК подключить через контактор резистор. Сопротивление резистора выбирается таким, чтобы напряжение несимметрии не превышало допустимого, а величина и длительность перенапряжений были минимальными. Для того чтобы резистор не перегревался большими токами при устойчивом однофазном замыкании он отключается с помощью контактора с выдержкой времени 0,5 с при превышении напряжения нулевой последовательности 20% от номинального.

Из всего разнообразия направлений работы по совершенствованию системы компенсации емкостных токов на землю к практической реализации оказались приемлемыми и получили широкое распространение ДГК типа ЗРОМ со ступенчатым регулированием индуктивности катушки и плунжерные ДГК с плавным регулированием индуктивности. В первом случае регулирование осуществляется путем переключения ответвлений на рабочей обмотке ДГР. Шаг регулирования по току для таких аппаратов составляет не менее 10% от полного тока катушки. Переключение отпаек производится только вручную при полностью снятом напряжении. Следовательно, в современных условиях дефицита мощности и наличия графика аварийного отключения электроприемников при использовании таких ступенчато регулируемых дугогасящих аппаратов возникновение значительных расстроек компенсации является неизбежным.

Во втором случае регулирование ДГК осуществляется за счет плавного изменения величины воздушного зазора между подвижными частями магнитопровода (плунжерами). Такие катушки обладают линейной намагничивающей характеристикой во всех режимах работы сети. Эксплуатируются, как правило, в блоке с устройствами автоматической регулировки компенсации и обеспечивают скорость регулирования по току в пределах 0,25–2 А/с.

В качестве регуляторов используют беспоисковые, изготовленные, как правило, кустарным способом устройства, основанные на принципе фазовой автоподстройки частоты контура нулевой последовательности и рабочего напряжения сети. Регуляторы не имеют системы контроля выхода объекта регулирования в область резонанса и не имеют обратной связи по степени настройки катушки. Если учесть, что точность настройки в значительной мере зависит от суммарной емкости всей сети, длительных и случайных изменений состояния изоляции электрооборудования, большого количества возможных параметрических возмущающих факторов и т.д., которые требуют периодического вмешательства обслуживающего персонала в систему регулирования, то становится очевидным, что в условиях эксплуатации контроль степени настройки катушки значительно затруднен, а высокая точность настройки мало вероятна.

Предлагается также повышение надежности работы сетей собственных нужд 6 кВ электростанций за счет перевода всех возникающих в системе собственных нужд однофазных замыканий на землю в глухие замыкания. Для этой цели следует подключить между сборными шинами 6 кВ и землей три однополюсных выключателя с индивидуальным приводом и управлением (рис. 2).

При возникновении любого вида однофазного замыкания на землю с помощью устройства выбора поврежденной фазы (УВПФ) происходит автоматическое включение соответствующего шунтирующего однофазного выключателя (КМ1-КМ3), соединенного с землей, и тем самым шунтирующего поврежденную фазу. Устройство выбора поврежденной фазы срабатывает с выдержкой времени порядка 0,5 с, отстроенной от времени действия защит на отходящих присоединениях. Пусковой орган УВПФ срабатывает при условии возникновения на трансформаторе TV напряжения 3Uо, превышающего заданную уставку, и при снижении одного из фазных напряжений до заданного уровня подает команду на включение соответствующего шунтирующего выключателя (КМ1-КМ3).

Рисунок 2 – Принципиальная схема ограничения перенапряжений и перевода дуговых замыканий в глухие


Ограничение перенапряжений в системе собственных нужд осуществляется за счет подключения к сборным шинам нелинейных оксидно-цинковых активных сопротивлений типа ОПН-КС-6/47. Последние обеспечивают глубокое ограничение перенапряжений до уровня 2Uф. Однако их недостатком является низкая термическая стойкость, так как допустимое время работы составляет порядка 2 с в режиме однофазного замыкания на землю в сети 6 кВ. В связи с этим предложено в цепи нейтрали фазных ОПН, соединенных в звезду (рис. 1), подключить однополюсный выключатель, через который происходит соединение нейтрали ОПН с землей. При этом между шунтирующими выключателями КМ1-КМ3 и выключателем нейтрали ОПН КМ0 выполняется блокировка, которая при включении любого из шунтирующих выключателей автоматически отключает выключатель нейтрали КМ0 и переводит два последовательно соединенных ОПН на подключение к линейному напряжению, чем ограничивается их время работы при однофазном замыкании на землю.

Подавление перенапряжений в сети с момента начала горения дуги до момента шунтирования поврежденной фазы однополюсным контактором (КМ1-КМ3) успешно можно осуществлять ограничителями перенапряжений типа ОПН, включенными по предлагаемой схеме (рис. 1) для осуществления термостабильности. Это позволяет отказаться от установки в сети дополнительного оборудования (присоединительного трансформатора и бэтеловых резисторов) и, кроме того, реализация такого технического решения ограничивает длительность существования дуговых замыканий и сопутствующих им перенапряжений временем порядка 0,5 с до момента включения шунтирующего контактора.

В условиях отсутствия в настоящее время надежных средств защиты сетей 6кВ собственных нужд электростанций от последствий однофазных замыканий на землю, ведется поиск эффективного решения проблемы повышения надежности работы электрооборудования, заключающегося в оптимизации и управлении режимом нейтрали сети для обеспечения максимального ограничения амплитуды и длительности всех возможных в эксплуатации повышений напряжения и снижения тепловых потерь в месте пробоя изоляции. Для решения поставленной задачи наиболее рациональным является использование математической модели, которая позволяет оценить возможный уровень перенапряжений в сети с учетом ее реальных параметров, а также эффективность применения того или иного технического решения.