При замыкании на землю через грунт начинает протекать аварийный ток IЗ, который коренным образом изменяет состояние электроустановок с точки зрения ее безопасности. При этом появляются напряжения между корпусами электрооборудования и землей, а также между отдельными точками поверхности земли, где могут находиться люди.
Рис. 11.2. Растекание тока в земле через полусферический заземлитель
При протекании тока на элементарном участке dx (рис. 11.2) создается падение напряжения dv (принят полусферический заземлитель).
dv = I3 * dr; | dr = | * dl | = | * dx | ; | dv = | I3 * | * dx, |
S | 2 x2 | 2 x2 |
где
– удельное сопротивление грунта;S = 2
х2 – сечение полусферы.Определим разность потенциалов между точкой А с координатой Х и точкой, где потенциал
т.е. :Тогда |
Это уравнение гиперболы (см. рис. 11.2).
Максимальное падение напряжения будет у заземлителя, а более удаленные точки грунта, имея большое поперечное сечение, оказывают меньшее сопротивление току IЗ. Если поместить точку А на поверхность электрода на расстоянии ХЗ от центра, то ее потенциал будет равен
= U3 = I3 * / 2 X3 = I3R3,где R3 – сопротивление растеканию тока.
Это есть напряжение электрода относительно земли. Материал заземления – металл. Он имеет малое удельное сопротивление, поэтому падение напряжения на заземлителе ничтожно мало. Корпус электроустановки, заземленной через этот заземлитель, будет иметь тот же потенциал, если пренебречь падением напряжения в сопротивлении соединительных проводов. Из экспериментов выяснено, что на расстоянии 20 метров от заземлителя потенциал практически равен нулю.
Напряжение шага Uш (В) – есть напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. При этом длина шага а принимается равной 0,8 м.
где
– коэффициент шага.Таким образом, если человек удален на расстояние более 20 м от заземлителя, коэффициент b практически равен нулю, шаговое напряжение UШ = 0, т.е. с удалением от заземлителя UШ уменьшается.
Напряжение прикосновения Uпр(В) есть напряжение между двумя точками цепи тока, которых одновременно касается человек, или разность потенциалов рук и ног.
UПР=
Р- Н,где
Р, Н – потенциалы рук и ног относительно земли.Рис. 11.2. Схема напряжения прикосновения к заземленным токоведущим частям
При пробое на корпус заземлитель и связанные с ним элементы оборудования получают напряжение относительно земли UЗ=IЗRЗ, следовательно, руки человека, касаясь корпусов в любом месте, получают этот потенциал:
Р = U3 = I3R3 = | I3 | . |
2 * x3 |
Потенциал ног определяется формой потенциальной кривой при растекании тока и удалением от заземлителя:
Н = | I3 | , |
2 * x |
следовательно,
где
– коэффициент прикосновения для полусферических заземлителей.При расстоянии Х =
(практически Х = 20 м) напряжение прикосновения имеет наибольшее значение (точка А, рис. 11.2) UПР= З, при этом =1. Это наиболее опасный случай прикосновения. При наименьшем значении х, когда человек стоит непосредственно на заземлителе, UПР = 0; = 0. Это безопасный случай. При других значениях х в пределах 0–20 м Uпр плавно возрастает от 0 до З, а от 0 до 1.Анализ условий опасности в трехфазных сетях
Анализ условий опасности трехфазных электрических сетей практически сводится к определению величины тока, протекающего через человека, и к оценке влияния различных факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, изоляции токоведущих частей от земли и т.п.
В трехфазной трехпроводной сети с изолированной нейтралью силу тока (А), проходящего через тело человека при прикосновении к одной из фаз сети в период ее нормальной работы (рис. 11.3), определяют следующим выражением в комплексной форме:
IЧ = UФ/RЧ + Z/3,
где Z – комплекс полного сопротивления одной фазы относительно земли.
1000 B |
Рис. 11.3. Схема сети с изолированной нейтралью |
Если емкость проводов относительно земли мала, т.е. С = 0, а сопротивления изоляции фаз относительно земли равны R1 = R2 = R3 = R, то ток через человека будет равен
I4 = | 3UФ | . |
3RЧ + R |
При хорошей изоляции (R = 0,5 МОм) ток имеет малое значение и такое прикосновение неопасно. Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного устранения возникших неисправностей. Если в сети имеется большая емкость относительно земли (разветвленные кабельные линии), то однофазное прикосновение будет опасным, несмотря на хорошую изоляцию проводов.
где Хс – емкостное сопротивление, равное 1/
c, Ом;с – емкость фаз относительно земли.
В сетях с изолированной нейтралью особенно опасно прикосновение к исправной фазе при замыкании на землю любой другой фазы, например второй (рис. 11.3). В этом случае человек включается на полное линейное напряжение.
.В сетях с заземленной нейтралью сопротивление заземления нейтрали RЗ очень мало по сравнению с сопротивлением утечек R. Поэтому ток, протекающий через человека, при прикосновении определяется фазным напряжением сети UФ, сопротивлением пола и обуви RПО и сопротивлением заземления нейтрали RЗ (рис. 11.4).
IЧ = UФ/RЧ + RПО + RЗ.
Рис. 11.4. Схема сети с заземленной нейтралью
Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период нормальной ее работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью.
При аварийном режиме работы, когда одна из фаз сети замкнута на землю через относительно малое сопротивление RПК (фаза 2), и прикосновений человека к одной из двух других фаз, человек оказывается приблизительно под фазным напряжением (Rз мало, рис. 11.5). Это одно из преимуществ сетей с заземленной нейтралью с точки зрения безопасности.