Лабораторная работа по физике
«ОПРЕДЕЛЕНИЕ ГРАВИТАЦИОННОЙ ПОСТОЯННОЙИ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИС ПОМОЩЬЮ МАТЕМАТИЧЕСКОГО МАЯТНИКА»
100 Общие сведения
Еще в глубокой древности было замечено, что планеты среди звезд описывают сложнейшие траектории. Для объяснения петлеобразного движения планет древнегреческий ученый К. Птолемей (2 в.н.э.), считая Землю расположенной в центре Вселенной, предложил, что каждая из планет движется по малому круг (эпициклу), центр которого движется по большому кругу, и в центре его находится Земля. Эта концепция получила название птоломеевой геоцентрической системы мира и господствовала почти полторы тысячи лет.
В начале XVI в. польский астроном Н. Коперник (1473-1543) обосновал гелиоцентрическую систему, согласно которой движение небесных тел объясняется движением Земли и других планет вокруг Солнца при суточном вращении Земли.
К началу XVII столетия большинство ученых убедились в справедливости гелиоцентрической системы мира. Немецкий астроном И.Кеплер (1546-1601), сформулировал законы движения планет:
1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые площади.
3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.
Впоследствии английский ученый И. Ньютон (1643-1727), изучая движение небесных тел, открыл всеобщий закон - закон всемирноготяготения: между любыми двумя материальными точками действует сила взаимного притяжения прямопропорциональная произведению масс данных точек m1 и m2 , и обратно пропорциональная расстоянию r между ними:
гравитационный ускорение сила тяжести
Эта сила называется гравитационной или силой всемирного тяготения, коэффициент пропорциональности G - гравитационная постоянная.
Закон всемирного тяготения установлен для тел, принимаемых за материальные точки, т.е. для таких тел, размеры которых малы по сравнению c расстоянием между ними. Если же размеры взаимодействующих тел сравнимы с расстоянием между ними, то данные тела следует разбить на точечные элементы, подсчитать по формуле (100.1) силы притяжения между попарно взятыми элементами, а затем геометрически их сложить (проинтегрировать).
Впервые экспериментальное доказательство закона всемирного тяготения для земных тел, а также количественное определение гравитационной постоянной проведено английским физиком Г. Кавендишем (1731-1810). Эксперимент производился с помощью крутильных весов, состоящих из двух коромысел А и С. Легкое коромысло А с двумя одинаковыми шариками массой m=729г подвешивается на упругой нити В. На другом коромысле С укреплены на той же высоте массивные шары массой М=58кг. Поворачивая коромысло с тяжелыми шарами вокруг вертикальной оси, можно менять расстояние между легкими и тяжелыми шарами. Под действием пары сил, приложенных к шарам массой m со стороны шаров массой М, легкое коромысло А поворачивается в горизонтальной плоскости, закручивая нить подвеса В до тех пор, пока момент силы упругости не уравновесит момент сил тяготения. Зная упругие свойства нити, по измеренному углу поворота можно найти возникающие силы притяжения, а так как масса шаров известна то и вычислить значение гравитационной постоянной.
Сила всемирного тяготения служит мерой гравитационного взаимодействия - одного из четырех основных фундаментальных взаимодействий. Для гравитационного взаимодействия присуща универсальность, проявляется всегда как притяжение между всеми известными материальными объектами. Гравитационное взаимодействие осуществляется посредством гравитационного поля как формы существования материи. В классической физике гравитационное взаимодействие описывается законом всемирного тяготения, в общей теории относительности гравитационное поле, создаваемое массами, связывается с кривизной пространственного континуума. Гравитация вызывает “искривление” пространства и замедление хода времени, что сказывается на всех происходящих процессах.
Основное свойство гравитационного поля заключается в том, что на всякое тело массой m внесенное в поле, действует сила тяготения,
,(100.2)где g - ускорение свободного падения. С другой стороны, если тело массой m находится в гравитационном поле Земли, масса которой М, то согласно (100.1) сила тяготения
,(100.3)где R - расстояние между телом и центром земли.
Формула (100.3) приближенная, так как при ее записи предполагалось, что вся масса Земли сосредоточена в ее центре. Под действием сил гравитационного поля Земли математический маятник совершает гармонические колебания. Период малых колебаний математического маятника
где
- длина маятника.Из формул (100.2) - (100.4) можно найти выражение для гравитационной постоянной
.(100.5)Таким образом, измеряя период колебаний математического маятника и его длину, при известных значениях радиуса Земли и ее массы можно определить гравитационную постоянную - одну из фундаментальных физических постоянных. Рассмотренный метод определения гравитационной постоянной является приближенным, и формула (100.5) позволяет дать лишь приблизительную оценку величины G.
100.1 Цель работы
Изучение кинематики материальной точки; определение ускорения силы тяжести; овладение методами оценки погрешности.
(ЛИТЕРАТУРА)
100.2 Приборы и принадлежности.
Математический маятник, секундомер, линейка.
100.3 Описание установки и вывод рабочей формулы.
Для экспериментального определения ускорения силы тяжести разработано много методов, один из которых с помощью математического маятника.
Математический маятник представляет собой длинную нить с подвешенным на конце грузом.
Из (100.4) следует формула для расчета ускорения силы тяжести
(100.6)Для экспериментального определения g обычно измеряют периоды колебаний Т1 и Т2 математического маятника, соответствующие двум длинам нитей
и . Ускорение силы тяжести g из (100.6) выражается через и периоды Т1 и Т2 . . (100.7),где
-в случае невозможности определить длину нити маятника, можно определить как разность расстояний от пола до груза маятника. .