Смекни!
smekni.com

Расчет реверсивного электропривода (стр. 3 из 7)

р- количество пульсаций, принимаем по [1,табл. 2.1], р =6;

Р(1)%- допустимое действующее значение основной гармоники тока, принимаем р(1)%- =8%;

Ud, n, т -амплитудное значение гармонической составляющей выпрямленного напряжения, определяем по [4,стр.131]:

Ud,n,m =

, (2.16)

где а - угол управления тиристорами, a =30 °;

Udo - максимальное значение выпрямленного напряжения, Udo=2,34∙I2ФН=2,34∙127= 297В; ω - круговая частота сети;

IdН - номинальный выпрямленный ток преобразователя.

И так,

Ud,n,m =

= 53 В.

Определяем индуктивность сглаживающего дросселя по формуле 2.15:

Ld2 =

= 0,0032 Гн.

Так как индуктивность выбранного уравнительного реактора больше индуктивность сглаживающего дросселя (LУP>Ld2), то отказываемся от установки последнего в силовую цепь преобразователя.

Уравнительного реактора будет достаточно для сглаживания пульсаций выпрямленного напряжения.

2.5 Расчет и выбор силовой коммутационной и защитной аппаратуры

2.5.1 Расчет и выбор R-Cцепочек

Для ограничения скорости нарастания прямого напряжения используем R-C цепочки, которые включаем параллельно каждому тиристору.

Используя стандартный ряд сопротивлений выбираем резистор R с сопротивлением в пределах 18... 51 Ом. Принимаем 36 Ом.

Из уравнения [5, стр.81]


, (2.17)

где Uycm- установившееся напряжение на тиристоре, Uуст=

U=1,41∙220=310,2 В.

-максимально допустимая критическая скорость нарастания прямого напряжения на тиристоре (из табл. 2.2), находим постоянную времени τ:

τ =

=
=0,245 мкс.

Значение емкости определяем по формуле:

С =

=
=0,0068 мкФ.

Используя стандартный ряд емкостей выбираем емкость конденсатора 0,0068 мкФ.

2.5.2 Расчет и выбор предохранителей

Для защиты тиристорного преобразователя от внутренних коротких замыканий во вторичную обмотку трансформатора поставим предохранители.

Находим амплитудное значение базового тока короткого замыкания по формуле

Im=

, (2.18)

где U2тф- амплитуда фазного напряжения вторичной обмотки трансформатора;

Х -индуктивное сопротивление, приведенное к вторичной обмотке трансформатора;

r -активное сопротивление, приведенное к вторичной обмотке трансформатора.

Находим полное, активное и индуктивное сопротивления вторичной обмотки трансформатора [4, стр.105]:

Z =

, (2.19)

где UK%-напряжение короткого замыкания, из табл. 2.1

U2ЛН -линейное напряжение вторичной обмотки трансформатора;

По формуле 2.19 имеем: Z =

= 0,0595 Ом.

Активное сопротивление, приведенное к вторичной обмотке трансформатора

r =

, (2.20)

где Ркз -мощность короткого замыкания, из табл. 2.1; I2фН-ток вентильной обмотки.

По формуле 2.20 имеем: r =

= 0,030 Ом.

Индуктивное сопротивление, приведенное к вторичной обмотке трансформатора

Xк2=

, (2.21)

где Z -полное сопротивление, приведенное к вторичной обмотке.

По формуле 2.21 имеем: Xк2=

=0,0514 Ом.

По формуле 2.18: Im=

= 3008 А.

Для нахождения ударного тока внутреннего короткого замыкания определяем коэффициент k1 по [4, рис.1-129а] в зависимости от ctg φк:

ctg φк =

=
= 0,5837→ k1= 0,3.

Ударный ток внутреннего короткого замыкания

Iуд = k1∙ I2кт= 0,3∙3008 = 902 А.

Выбираем плавкий предохранитель, исходя из условий:

- номинальное напряжение предохранителя должно соответствовать напряжению цепи, в которой он установлен;

-номинальный ток предохранителя должен быть больше максимального рабочего тока, протекающего через него;

-номинальный ток плавкой вставки должен быть больше или равен максимальному рабочему току, протекающего через него.

Выбираем предохранитель ПР10-82-1000.

Проверка предохранителя на срабатывание при коротком замыкании

3∙Iплавст < Iуд /

.

3∙82 = 246А < 902/1,41=639A, как видим условие выполняется.

Параметры выбранного предохранителя необходимо сводим в таблицу (см. п. 2.5.3.).

2.5.3Расчет и выбор автоматического выключателя

Для защиты тиристорного преобразователя от внешних коротких замыканий в первичную обмотку трансформатора устанавливают автоматический выключатель.

Для вычисления ударного тока внешнего короткого замыкания определяем коэффициент k2 по [4, рис.1-127а] в зависимости от ctgφк:

ctg φк =

= 0,5837→ k2= 0,7.

Ударный ток внутреннего короткого замыкания:

Iуд2 = k2∙ I2кт= 0,7∙3008= 2105А.

Автоматический выключатель выбирают из условий:

-номинальный ток автомата должен быть больше рабочего тока первичной обмотки трансформатора: I1=

=
= 39,5 А;

-номинальное напряжение автомата должно быть больше или равно сетевому напряжению;

-число полюсов должно быть равно числу фаз питающей сети;

-номинальный ток теплового расцепителя должен быть больше рабочего тока I1;

-номинальный ток электромагнитного расцепителя должен быть больше рабочего тока I1;

-ток срабатывания электромагнитного расцепителя должен быть меньше действующего значения ударного тока внешнего короткого замыкания протекающего через выключатель Iуд2/

∙kmp, т.е. 2105/1,41∙1,73=860А, условие 250А<860А – выполняется.

-ток термической устойчивости должен быть больше тока внешнего короткого замыкания Iуд2/ kmp , в нашем случае 2105/1,73= 1217А < 3500А.

Выписываем параметры выбранного автоматического выключателя в таблицу

Ток плавкой вставки, А 82
Тип автоматического выключателя АЕ
Номинальный ток автомата, А 50
Номинальное напряжение, В 1000
Число полюсов 3
Номинальный ток теплового расцепителя, А 50
Номинальный ток электромагнитного расцепителя, А 50
Ток срабатывания электромагнитного расцепителя, А 250
Ток термической устойчивости, А 3500

3. ВЫБОР СТРУКТУРЫ И ОСНОВНЫХ УЗЛОВ СИСТЕМЫ УПРАВЛЕНИЯ ТИРИСТОРНЫМ ПРЕОБРАЗОВАТЕЛЕМ

Система управления преобразовательным устройством предназначена для формирования и генерирования управляющих импульсов определенной формы и длительности, распределения их по фазам и изменения момента подачи на управляющие электроды вентилей преобразователя. В настоящее время широкое распространение получили электронные (полупроводниковые) системы управления вентильными преобразователями, так как они имеют ряд преимуществ перед электромагнитными системами: высокое быстродействие, надежность, малая потребляемая мощность и малые габариты.

Системы управления, в которых управляющий сигнал имеет форму импульса, фазу которого можно регулировать, называют импульсно-фазовыми.

Системы управления выполняют по синхронному и асинхронному принципам.

Синхронный принцип импульсно-фазового управления преобразователями является наиболее распространенным. Его характеризует такая функциональная связь узлов СУ, предназначенных для получения управляющих импульсов, при которой синхронизация управляющих импульсов осуществляется напряжением сети переменного тока.

Асинхронные системы управления преобразователями применяются при существенных искажениях напряжения питающей сети, в частности при значительной несимметрии трехфазных напряжений по величине и фазе. Использование в таких условиях синхронной системы невозможно ввиду получающейся недопустимой асимметрии в углах а по каналам управления тиристорами. Наиболее распространены асинхронные СУ в преобразователях, потребляющих мощность, соизмеримую с мощностью питающей сети. В данном проекте необходимо использовать синхронную систему управления.