Смекни!
smekni.com

Электроснабжение и электрообслуживание узловой распределительной подстанции (стр. 2 из 5)

Метод упорядоченных диаграмм является основным при расчете нагрузок. Применение его возможно, если известны единичные мощности электроприемников, их количество и технологическое назначение.

Метод упорядоченных диаграмм, рекомендованный Руководящими указаниями по определению электрических нагрузок промышленных предприятий, относится к числу методов, использующих математические методы теории вероятностей. Для метода упорядоченных диаграмм характерно установление приближенной связи расчетной нагрузки Рр с показателями режима работы электроприемников.

Метод упорядоченных диаграмм позволяет наиболее точно и сравнительно быстро рассчитывать нагрузки.

Расчетные кривые метода упорядоченных диаграмм. Метод упорядоченных диаграмм исходит из характеристик индивидуальных графиков нагрузки.

Пример расчета производится по Т-1.

Расчет производится на примере компрессорной установки

Произвести расчет суммарной мощности этой группы.

∑Pном. = n× Рном., ∑Pном. = 1× 20 = 20 кВт.

Производится расчет средней активной мощности этой группы

Рср. = Ки × Рном., Рср. = 0,85 × 20 = 17 кВт.

Производится расчет средней реактивной мощности этой группы.

Qср. = tgφ× Рср.

Qср. = 0,75 × 20 = 12,75 кВар.

Аналогично производятся расчеты для остальных групп, электроприемников данного Т-1, данные заносятся в таблицу №2.

Производятся суммирование некоторых величин.

V– Суммирование, W - Вычисление

Производится расчет Ки этого Т-1

Ки

гр. эп. =
Ки гр. эп. =
= 0,6

Определить эффективное число ЭП.

n≥ 5 Kи ≥ 0,2 m3, nэф. =

Определить показатель узловой связи этого Т-1.

m=

m=

Определяем nэффективное

nэф. =

Определить активный коэффициент максимума.

Kmax= 1,46 т. к n= 4,2 Ки = 0,6

Cогласно таблице № 2.3 стр.26.В. П Шеховцов Расчет и проектирование схем электроснабжения.

Определить реактивный коэффициент максимума.

Kmaxреакт. = 1.1 если nэф. < 10

Kmaxреакт. = 1 если nэф. ≥ 10

Определить значение активной максимальной мощности.

Р max = K max акт. × ∑ Р ср.

Р max= 1,46 × 301,78 = 440,59 кВт.

Определить значение реактивной максимальной мощности.

Qmax= Kmaxреак. × ∑ Qср.

Qmax= 1,1 × 74,14 = 81,55 кВар.

Определяем полную максимальную мощность данного Т-1.

Smax=

Smax=

= 448,07 кВт·А

Определить значение тока подводимого к данному Т-1.

І max=

І max=
=658,92 А

Аналогично производится расчет для остальных Т-2.

Производится расчет для всей подстанции, данные заносятся в таблицу №2

2. Компенсация реактивной мощности

Реактивная мощность не преобразуется в другие виды мощности, не совершает работу и поэтому называется мощностью условно. Реактивная мощность идет на создание магнитных и электрических полей. Основными потребителями реактивной мощности являются асинхронные двигатели, трансформаторы, сварочные аппараты. Передача больших потоков реактивной мощности по элементам сети приводит к большим токовым нагрузкам, и как следствие, к увлечению затрат на сооружение сети, повышенным потерям активной мощности. Недостаток реактивной мощности в системе влечет за собой снижение напряжения электрических сетей и у потребителей. Поэтому генерируемая реактивная мощность должна быть равна потребляемой. Для этого применяют компенсирующие устройства. На предприятиях для компенсации реактивной мощности применяют синхронные двигатели, силовые конденсаторы.

Производится расчет реактивной мощности.

Qку расч. = £ × Рср (tgφподст. - tgφнорм.)

Где £ - это коэффициент, учитывающий естественные мероприятия по повышению cosφ

£ = 0,95

tgφподст. =

tgφнорм. = 0,33

Так как тангенс фи подстанции, меньше тангенса фи нормированного, компенсация реактивной мощности не требуется.

3. Выбор мощности силовых трансформаторов

Для двух трансформаторной подстанции выбираем режим работы трансформаторной подстанции.

Нормальным называется режим работы трансформатора, при котором его параметры отклоняются от номинальных в пределах, допустимых стандартами, техническими условиями и другими нормативными документами.

При нагрузке, не превышающей номинальную, допускается продолжительная работа трансформатора при повышении напряжения на любом ответвлении любой обмотки на 10% сверх номинального напряжения данного ответвления. При этом напряжение на любой обмотке не должно быть выше наибольшего рабочего напряжения Uраб. max, определяемого надежностью работы изоляции и нормируемого ГОСТ 721-77 в следующих пределах от номинального напряжения электрической сети Uном:

Производится расчет мощности силового трансформатора.

Sрасч. тр. =

Sрасч. тр. =
·A

·A

Выбираем трансформатор с ближайшей номинальной мощностью.

Тип ТСЗ 400/10 ВН 10 НН 0,4

Рх. х = 1300 Рк. з = 5400 Uк % - 5,5 Іх. х% = 3

Производится проверка трансформаторов по коэффициентам загрузки.

Кз. норм. =

Кз. норм. =

Кз. ав. =

≤ 1,4 Кз. ав. =

Паспортные данные трансформатора записываются.

Тип ТСЗ 400/10 ВН 10 НН 0,4

Рх. х = 1300 Рк. з = 5400 Uк % - 5,5 Іх. х% = 3

Определить потери мощности в трансформаторах.

∆ Sтр. = (∆Рх. х + К2з норм × ∆Рк. з) + ј

∆ Sтр. =

ј

=

· А

Производим расчет потерь мощности на ТП.

∆Sтп. = 2 × ∆Ртр. + ј 2 × ∆Qтр.

∆Sтп. = 2 × 4,75 + ј 2× 26,08 =

кВт·А

Определяется расчетная мощность ТП.

Sрасч. тп. = (Р max+ ∆Ртп) + ј (Qmax+ ∆Qтп)

Sрасч. тп. =

·А

Определить сечение высоковольтной кабельной линии по экономической плотности тока.

Fсеч. вл. =

Jэк. - экономическая плотность тока. Jэк. = 1,4

Согласно таблице 10.1. стр.548 учебное пособие "Электрическая часть электростанций и подстанций" Б. И Неклепаев., И. П Крючков.

Fсеч. вл. =

Согласно таблице 7.35. стр.428 учебное пособие "Электрическая часть электростанций и подстанций" Б. И Неклепаев., И. П Крючков.

Выбираем кабель марки АС сечением 50 мм

.

4. Описание ТП

Трехфазные сухие защищенные трансформаторы серии ТСЗ предназначены для понижения напряжения трехфазного переменного тока у потребителей. Трансформаторы имеют высокую надежность, не требуют затрат на обслуживание, экономичны и просты в эксплуатации. Трансформаторы ТСЗ защищенного исполнения (степень защиты IP21).

Преимущества трансформаторов ТСЗ простота и высокий уровень безопасности при монтаже. Обладают компактными размерами. Пригодны для районов с резко континентальным климатом. Трансформаторы с обмотками класса изоляции F могут работать в сетях, подверженных грозовым и коммутационным перенапряжениям. Пригодны для условий повышенной влажности и загрязненности. Имеют пониженный уровень шума и высокую стойкость к механическим воздействиям, возникающим в режиме короткого замыкания. Выдерживают длительные тепловые нагрузки. Экологически безопасны для окружающей среды, обладают исключительными противопожарными свойствами, что позволяет устанавливать в местах с повышенными требованиями к охране окружающей среды и безопасности (жилые и общественные здания, спортивные сооружения, метро, шахты, промышленные предприятия), высокая динамическая стойкость обмоток к токам КЗ, низкий уровень частичных разрядов, малошумность, малые габариты.