Федеральное агентство по образованию Российской Федерации
Санкт-петербургский государственный
Политехнический университет
Кафедра Электрические системы и сети
Выпускная работа бакалавра
Санкт-Петербург 2007
электрический станция схема замыкание
Исходные данные
Введение
1.Выбор главной схемы электрических соединений станции и схемы собственных нужд
Проектирование главной схемы
1.2 Технико-экономический анализ вариантов схемы
2.Расчет токов короткого замыкания для выбора электрооборудования главной схемы и схемы собственных нужд
2.1 Схема замещения и приведение параметров элементов схемы к базисным условиям
2.2Короткое замыкание на шинах РУ-110 кВ (точка K1)
2.3Короткое замыкание на шинах РУ-35 кВ (точка K2)
2.4Короткое замыкание на шинах РУ-6 кВ (точка K3)
2.5Короткое замыкание на шинах РУСН-0,4 кВ (точка K4)
3.Выбор электрических аппаратов и проводников
3.1Выбор выключателей
3.1.1РУ-330 кВ
3.1.2РУ-110 кВ
3.1.3РУ-35 кВ
3.1.4РУ СН-0,4кВ
3.2 Выбор разъединителей
3.2Выбор сборных шин и токоведущих частей
3.2.1Выбор сборных шин 35 кВ
3.2.2Выбор токоведущих частей от силовых трансформаторов до сборных шин 35 кВ
3.2.3Выбор сборных шин 110 кВ
3.2.4Выбор токоведущих частей от силовых трансформаторов до сборных шин 110 кВ
3.2.5Выбор сборных шин 330 кВ
3.2.6Выбор токоведущих частей от силовых трансформаторов до сборных шин 330 кВ
4.Выбор измерительных трансформаторов тока и напряжения
Литература
Тип подстанции –подстанция 330/110/35кВ.
Связь с системой осуществляется на напряжении 330 кВ по 2-м линиям длиной 150 км. Потребители:
Таблица
Напряжение, кВ | Нагрузка | |
Рмин, МВт | Рмакс, МВт | |
35 | 30 | 40 |
6 | 20 | 40 |
Мощность короткого замыкания системы 3000 МВ·А.
Цель курсового проекта – спроектировать электрическую часть понижающей подстанции 110/35/6 кВ. Связь с системой осуществляется по двум линиям длиной 20 км на напряжении 110 кВ. Мощность короткого замыкания системы составляет 3000 МВ·А. Подстанция имеет три РУ, к сборным шинам 35 кВ подключен один ТСН для осуществления скрытого резервирования электроснабжения потребителей СН.
В курсовом проекте выполнено: выбор и обоснование главной схемы электрических соединений и схемы электроснабжения потребителей собственных нужд, выбор типа и мощности понижающих трансформаторов, рабочих трансформаторов собственных нужд; расчет токов короткого замыкания; выбор коммутационных аппаратов, токопроводов, токоведущих частей и шин распределительных устройств, измерительных трансформаторов тока и напряжения.
Понижающие подстанции предназначены для распределения энергии по сети НН и создания пунктов соединения сети ВН (коммутационных пунктов). Определяющей для выбора места размещения подстанции является схема сети СН, для питания которой предназначена рассматриваемая подстанция. Оптимальная мощность и радиус действия подстанции определяются плотностью нагрузок в районе её размещения и схемой сети НН.
Классификация подстанций по их месту и способу присоединения к сети нормативными документами не установлена. Исходя из применяющихся типов конфигурации сети и возможных схем присоединения подстанций их можно подразделить на: тупиковые, ответвительные, проходные и узловые.
По назначению подстанции делятся на потребительские, предназначенные для электроснабжения потребителей электроэнергии, и системные, осуществляющие связь между отдельными частями ЭЭС.
Понижающая подстанция 110/35/6 кВ, проектируемая в работе является потребительской тупиковой подстанцией, являющаяся центром питания по отношению к потребителям электрических сетей напряжением 6 и 35 кВ.
1.Выбор главной схемы электрических соединений станции и схемы собственных нужд
Основные требования к главным схемам электрических соединений:
– схема должна обеспечивать надёжное питание присоединённых потребителей в нормальном, ремонтном и послеаварийном режимах в соответствии с категориями нагрузки с учётом наличия или отсутствия независимых резервных источников питания;
– схема должна обеспечивать надёжность транзита мощности через подстанцию в нормальном, ремонтном и послеаварийном режимах в соответствии с его значением для рассматриваемого участка сети;
– схема должна быть по возможности простой, наглядной, экономичной и обеспечивать средствами автоматики восстановление питания потребителей в послеаварийной ситуации без вмешательства персонала;
– схема должна допускать поэтапное развитие РУ с переходом от одного этапа к другому без значительных работ по реконструкции и перерывов в питании потребителей;
– число одновременно срабатывающих выключателей в пределах одного РУ должно быть не более двух при повреждении линии и не более четырёх при повреждении трансформатора.
1.1 Технико-экономический анализ вариантов схемы
Выбор силовых трансформаторов
Суммарная максимальная нагрузка подстанции равна (если принять cosφн=0,8):
1 вариант. Два автотрансформатора мощностью:
. По табл. 3.8 выбираю два трёхобмоточных трансформатора ТДТН-80000/110 с параметрами Sном = 80 МВ·А, UВН = 115 кВ,UСН = 38,5 кВ, UНН = 6,6 кВ, uк в-с = 11 %, uк в-н= 18,5 %, uк с-н= 7 %, Рх = 82 кВт, Ркз в-с = 390 кВт. Стоимость трансформатора, приведенная к уровню цен 2007 года, составляет 4110 тыс. руб. Коэффициент перехода к современному уровню цен принят равным 30.
2 вариант. 4 трансформатора:
. По табл. 3.81 выбираю четыре трансформатора ТРДН-40000/110 с параметрами Sном = 40 МВ·А, UВН = 115 кВ, UНН = 6,3 кВ, uк = 10,5 %, Рх = 36 кВт, Ркз = 172 кВт. Стоимость трансформатора, приведенная к уровню цен 2007 года, составляет 2400 тыс. руб.Рис. 1. Варианты структурной схемы
Выбор трансформаторов собственных нужд
В соответствии с табл. 2.10, подстанции с высшим напряжением 330 кВ имеют максимальную нагрузку СН, лежащую в пределах от 100 до 400 кВт. Меньшие значения соответствуют подстанциям с упрощёнными схемами, большие – подстанциям с развитыми распредустройствами высшего напряжения и с установленными синхронными компенсаторами.
Следовательно, выбираю РСН = 200 кВт. Мощность потребителей невелика, поэтому они присоединяются к сети 380/220 В, которая получает питание от двух понижающих трансформаторов СН. При этом мощность каждого из двух трансформаторов должна обеспечивать полностью электроснабжение всех потребителей СН, то есть стопроцентный резерв мощности (скрытое резервирование). Шины СН 0,4 кВ для надёжности секционируют автоматическим выключателем.
Выбираю трансформаторы СН:
. По табл. 3.3 выбираю два двухобмоточных трансформатора: ТМ-250/35 с параметрами Sном =250 кВ·А, UВН = 35 кВ, UНН = 0,4 кВ, uк = 6,5 %, Рх = 1 кВт, Ркз = 3,7 кВт. Стоимость трансформатора, приведенная к уровню цен 2007 года, составляет 1800 тыс. руб.Экономическая целесообразность схемы соединения определяется минимумом приведенных затрат:
З = рн·К + И + У,
где К – капиталовложения на сооружение электроустановки, тыс. руб.; рн – нормативный коэффициент экономической эффективности, в настоящее время равный для подстанций 0,15 1/год; И – годовые эксплуатационные издержки, тыс. руб./год; У – ущерб от недоотпуска электроэнергии, тыс. руб./год. Ущерб от недоотпуска электроэнергии в данной работе не учитывается.
Таблица 1. Расчет капиталовложений.
№ п/п | Оборудование | Расчётная стоимость единицы | 1-й вариант | 2-й вариант | ||
Число | Общая стоимость | Число | Общая стоимость | |||
тыс. руб. | шт. | тыс. руб. | шт. | тыс. руб. | ||
1 | АТДЦН-200000/330/110 | 23850 | 2 | 47700 | – | – |
2 | АТДЦТН-250000/330/150 | 29100 | - | - | 1 | 29100 |
4 | Выкл. 110 кВ | 10535 | 4 | 42140 | 3 | 31605 |
5 | Выкл. 35 кВ | 1804 | 5 | 13000 | 4 | 10400 |
6 | Выкл. 6 кВ | 1804 | 7 | 12628 | 6 | 10824 |
Итого, тыс. руб. | 115468 | 81929 |
– где расчетная стоимость предварительно выбранных выключателей определена по таблицам 5.1 и 5.2
Годовые эксплутационные издержки определяются по формуле:
И = Иа + Ипот = а·К/100 + β·ΔWгод,
где а =(8…9)% – отчисления на амортизацию и обслуживание; ΔWгод – годовые потери энергии в электроустановке, кВт·ч; β – средняя себестоимость потерь электроэнергии, коп/кВт·ч.
Принимаю а = 8%, β = 25 коп/кВт·ч.
Потери электроэнергии в одном двухобмоточном трансформаторе определяются по формуле:
, здесь Рх, Ркз – потери мощности холостого хода и короткого замыкания, кВт; Sном – номинальная мощность трансформатора, МВ·А; Sмакс – расчетная максимальная нагрузка трансформатора, МВ·А; Т – продолжительность работы трансформатора в году; τ– продолжительность максимальных потерь.