Федеральное агентство по образованию
ГОУ "Ульяновский государственный педагогический университет им. И. Н. Ульянова"
Кафедра математического анализа
"Некоторые уравнения математической физики в частных производных"
Ульяновск, 2008 г.
Содержание
Введение
Глава 1. Уравнения гиперболического типа
1.1 Задачи, приводящие к уравнениям гиперболического типа
1.2 Уравнение колебаний струны
1.3 Метод разделения переменных. Уравнение свободных колебаний струны
1.4 Решение уравнений
Глава 2. Уравнения параболического типа
2.1 Уравнение распространения тепла в стержне
2.2 Решение задач
Заключение
Литература
Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом "Интегральном исчислении" Л. Эйлера.
Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция aU + bV при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.
Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.
Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.
Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.
Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.
Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.
Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа
называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.
В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины
в начальный момент направлена по отрезку оси Оx от 0 до . Предположим, что концы струны закреплены в точках . Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией
, которая дает величину перемещения точки струны с абсциссой x в момент t.Рис. 1.1.
Так как мы рассматриваем малые отклонения струны в плоскости
, то будем предполагать, что длина элемента струны равняется ее проекции на ось Ox, т.е. Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.Рассмотрим элемент струны
.Рис. 1.2.
На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы
. Тогда проекция на ось Ou сил, действующих на элемент , будет равна . Так как угол мал, то можно положить , и мы будем иметь:(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).
Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть
- линейная плотность струны. Тогда масса элемента струны будет . Ускорение элемента равно . Следовательно, по принципу Даламбера будем иметь: .Сокращая на
и обозначая , получаем уравнение движения .(1)Это и есть волновое уравнение – уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция
должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны , и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.Пусть, например, как мы предполагали, концы струны при
неподвижны. Тогда при любом t должны выполнятся равенства: (2’) (2’’)Эти равенства являются граничными условиями для нашей задачи.
В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть
(3’)Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией
. Таким образом, должно быть (3’’)Условия (3’) и (3’’) являются начальными условиями.
Замечание. В частности, может быть
или . Если же и , то струна будет находится в покое, следовательно, .Метод разделения переменных или метод Фурье, является одним из наиболее распространенных методов решения уравнений с частными производными. Изложение этого метода мы проведем для задачи о колебаниях струны, закрепленной на концах. Итак, будем искать решение уравнения