Смекни!
smekni.com

Некоторые уравнения математической физики в частных производных (стр. 1 из 4)

Федеральное агентство по образованию

ГОУ "Ульяновский государственный педагогический университет им. И. Н. Ульянова"

Кафедра математического анализа

"Некоторые уравнения математической физики в частных производных"

Ульяновск, 2008 г.


Содержание

Введение

Глава 1. Уравнения гиперболического типа

1.1 Задачи, приводящие к уравнениям гиперболического типа

1.2 Уравнение колебаний струны

1.3 Метод разделения переменных. Уравнение свободных колебаний струны

1.4 Решение уравнений

Глава 2. Уравнения параболического типа

2.1 Уравнение распространения тепла в стержне

2.2 Решение задач

Заключение

Литература


Введение

Изучением дифференциальных уравнений в частных производных занимается математическая физика. Основы теории этих уравнений впервые были изложены в знаменитом "Интегральном исчислении" Л. Эйлера.

Классические уравнения математической физики являются линейными. Особенность линейных уравнений состоит в том, что если U и V – два решения, то функция aU + bV при любых постоянных a и b снова является решением. Это обстоятельство позволяет построить общее решение линейного дифференциального уравнения из фиксированного набора его элементарных решений и упрощает теорию этих уравнений.

Современная общая теория дифференциальных уравнений занимается главным образом линейными уравнениями и специальными классами нелинейных уравнений. Основным методом решения нелинейных дифференциальных уравнений в частных производных выступает численное интегрирование.

Круг вопросов математической физики тесно связан с изучением различных физических процессов. Сюда относятся явления, изучаемые в гидродинамике, теории упругости, электродинамике и т.д. Возникающие при этом математические задачи содержат много общих элементов и составляют предмет математической физики.

Постановка задач математической физики, будучи тесно связанной с изучением физических проблем, имеет свои специфические черты. Так, например, начальная и конечная стадии процесса носят качественно различный характер и требуют применения различных математических методов.

Круг вопросов, относящихся к математической физике, чрезвычайно широк. В данной работе рассматриваются задачи математической физики, приводящие к уравнениям с частными производными.

Расположение материала соответствует основным типам уравнений. Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа.


Глава 1. Уравнения гиперболического типа

1.1 Задачи, приводящие к уравнениям гиперболического типа

Уравнения с частными производными 2-го порядка гиперболического типа наиболее часто встречаются в физических задачах, связанных с процессами колебаний. Простейшее уравнение гиперболического типа

называется волновым уравнением. К исследованию этого уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т.д.

1.2 Уравнение колебаний струны

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины

в начальный момент направлена по отрезку оси Оx от 0 до
. Предположим, что концы струны закреплены в точках
. Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией

, которая дает величину перемещения точки струны с абсциссой x в момент t.

Рис. 1.1.

Так как мы рассматриваем малые отклонения струны в плоскости

, то будем предполагать, что длина элемента струны
равняется ее проекции на ось Ox, т.е.
Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через Т.

Рассмотрим элемент струны

.

Рис. 1.2.


На концах этого элемента, по касательным к струне, действуют силы Т. Пусть касательные образуют с осью Ox углы

. Тогда проекция на ось Ou сил, действующих на элемент
, будет равна
. Так как угол
мал, то можно положить
, и мы будем иметь:

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть

- линейная плотность струны. Тогда масса элемента струны будет
. Ускорение элемента равно
. Следовательно, по принципу Даламбера будем иметь:

.

Сокращая на

и обозначая
, получаем уравнение движения

.(1)

Это и есть волновое уравнение – уравнение колебаний струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция

должна удовлетворять еще граничным условиям, указывающим, что делается на концах струны
, и начальным условиям, описывающим состояние струны в начальный момент (t = 0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, как мы предполагали, концы струны при

неподвижны. Тогда при любом t должны выполнятся равенства:

(2’)

(2’’)

Эти равенства являются граничными условиями для нашей задачи.

В начальный момент t = 0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f (x). Таким образом, должно быть

(3’)

Далее, в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией

. Таким образом, должно быть

(3’’)

Условия (3’) и (3’’) являются начальными условиями.

Замечание. В частности, может быть

или
. Если же
и
, то струна будет находится в покое, следовательно,
.

1.3 Метод разделения переменных. Уравнение свободных колебаний струны

Метод разделения переменных или метод Фурье, является одним из наиболее распространенных методов решения уравнений с частными производными. Изложение этого метода мы проведем для задачи о колебаниях струны, закрепленной на концах. Итак, будем искать решение уравнения