Ток проводимости – это ток, возникающий движением электронов и ионов в светящемся газе. Если величина тока смещения в среднем значительно превышает величину тока проводимости, то разрядный промежуток может быть в первом приближении моделирован как емкость, включенная в цепь высокой частоты, и вычисления могут проводиться по соответствующим формулам электротехники. Поэтому такой разряд, который может быть приблизительно представлен схемой электротехнического тока, получил наименование емкостного высокочастотного разряда. Электроды могут быть проводящим металлом, соприкасающимся с газовой средой внутри промежутка, а могут быть внешними, т.е. отделенными от газа слоем диэлектрика. В первом случае разряд называется электродным, во втором – безэлектродным. Плазма таких разрядов, как правило, слабо ионизирована, неравновесна и подобна плазме тлеющего разряда.
Интерес к исследованию ЕВЧР возрос в течение последних 20–30 лет в связи с его использованием для нанесения тонких покрытий металлов и диэлектриков (нанотехнологии), а также возможности создания лазеров с регулируемой частотой излучения (нелинейная оптика). Особый интерес представляет исследование ЕВЧР для синтеза и анализа некоторых веществ (плазмохимия) [11].
Исследования проводились с электродным и с безэлектродным разрядом при разных давлениях (от 0,5 мм рт. ст. до 20 мм рт. ст.). Некоторые результаты такого исследования представлены в настоящей работе.
Рис. 15 Разрядная камера с внешними электродами
Разряд горел в зависимости от давления при различных напряжениях порядка 500–1000В.
Рис. 16 Вид разряда в аргоне в камере с внутренними электродами.
Темные пространства аналогичны Фарадеевому пространству тлеющего разряда на постоянном токе. В центре мы наблюдаем светящийся столб газа, аналогичный положительному столбу тлеющего разряда. В отличие от тлеющего разряда на постоянном токе, где положительный столб примыкает к аноду, здесь с обеих сторон имеется темное пространство. Таким образом, в разрядной трубке в один полупериод ВЧ напряжение создается тлеющий разряд с катодом слева, а с анодом справа, а в другой полупериод наоборот. Между светящимся столбом и электродом промежутка имеется активная область – приэлектродный слой пространственного заряда (ПСПЗ), которая и является генератором основных явлений ЕВЧР.
Если давление меньше, то величина приэлектродного слоя увеличивается, и может достигать от долей см. до 2 см., это связано с тем, что при уменьшении давления увеличивается средняя длина свободного пробега электронов.
а) б)
Рис. 17 Вид разряда в аргоне в камере с внешними электродами
Были проведены исследования по методике, предложенной в работе А.Ф. Александров, В.А. Рябный, В.П. Савинов, В.Г. Якунин «Бесконтактный метод изучения параметров приэлектродной области ВЧ разряда». Новизной было то, что в опыте кафедры электроники МГУ использовался гелий, а в нашей работе использовался аргон. Целью исследования было освоение новым методик по изучению ЕВЧР.
Рис. 18 Эквивалентная схема экспериментальной электрической цепи ЕВЧР
Рис. 19 Принципиальная схема установки
В процессе электрического пробоя разрядного промежутка и формирования разряда образуются ПСПЗ, которые обеспечивают выход ЕВЧР на стационарный режим. Как обнаружено экспериментально, в установившемся ЕВЧР за каждый период ВЧ поля (T
10 с) суммарный электрический заряд, приходящий на электрод, равен нулю. Соответственно, квазистационарные параметры конденсатора ПСПЗ: емкость Cs, заряд qs и толщина слоя ds остаются постоянными. При этом заряд qs обеспечивает в ПСПЗ квазистационарную разность потенциалов Us, благодаря которой за период ВЧ поля заряд поступающих из плазмы на электрод электронов компенсирует приносимый заряд положительных ионов и заряд эмитируемых с поверхности электрода электронов.В участке электрической цепи ЕВЧР, состоящем из последовательно соединенных емкостей C01, C
и Cs1, активным элементом является емкость C , заряд на обкладках которой q определяют физические процессы в ПСПЗ.При этом данный квазистационарный заряд q
устанавливается во всех последовательно соединенных емкостях электрической цепи, в том числе и на измерительной емкостиДля измерения квазистационарных напряжений U
, U и U в экспериментальной схеме использовались вольтметры электростатической системы типа C-95. Таким образом, предложенный метод включает в себя измерение электрического напряжения на нескольких внешних элементах цепи ЕВЧР и вычисление искомых параметров по приведенным формулам с использованием известных конструктивных параметров экспериментальной системы. (30) (31) для квазистационарного напряжения , - переменные напряжения, измеряемые приборами С-95В ходе не сложных математических преобразований получили:
(32) (33) (34) (35) (36)емкостный разряд ленгмюр зонд
=270В | =300 В | =300 В | =200 пФ | =140 пФ |
=18 В | =10 В | =20 В | =50 пФ | =70 пФ |
Р=0,8 Тор.
U
=134 В, U =136 В, d =0,19 см, d =1,4 смЯркость излучения не одинакова вдоль длины промежутка из-за распределенной емкости на землю, так как ток не одинаков в разных сечениях промежутка.
Мы получили скачки потенциала в приэлектродном слое пространственного разряда в аргоне. По порядку величины они оказались схожими с теми, что получила кафедра электроники в МГУ. В дальнейшем предполагается провести исследования на более качественном современном оборудовании.
Заключение
В ходе выполнения данной выпускной квалификационной работы приобретены навыки экспериментальной работы с приборами. Изучив и проанализировав литературу по теории газового разряда, экспериментально был исследован емкостной высокочастотный разряд при давлениях от 0.1 мм рт. ст. до 5 мм рт. ст. при различных частотах.
Изготовлена экспериментальная установка для изучения плазмы методом зондов Ленгмюра.
Изготовлена экспериментальная установка и проведен эксперимент по определению параметров плазмы методом зондов Ленгмюра. Получены вольтамперные характеристики разряда и кривые Пашена при различных частотах, а также вычислены электронная температура (
), концентрация положительных ионов ( ) и их подвижность ( ). Измеренные параметры, представлены в таблице, удовлетворительно совпадают с теоретическими значениями.