Введение
Цель работы – экспериментальное исследование параметров плазы емкостного высокочастотного разряда (ЕВЧР).
Задачи:
– изучить литературу по газовому разряду;
– провести наблюдения и эксперименты по определению параметров плазмы ЕВЧР;
Объектом исследования является ЕВЧР в воздухе, аргоне.
Предметом исследования являются параметры плазмы тлеющего разряда.
Данная работа состоит из введения, двух глав, заключения.
В первой главе изложены теоретические сведения об электрическом разряде в газах и подробно о емкостном высокочастотном разряде. Изложена теория метода зондов Ленгмюра.
Во второй главе рассказывается об описании экспериментальной установки, построении кривых Пашена для различных газов при разных частотах, определении параметров плазмы (электронной температуры, концентрации и подвижности положительных ионов), нахождение скачков потенциала в приэлектродном слое пространственного разряда в аргоне бесконтактным методом.
Актуальность исследования. Несмотря на трехсотлетнюю историю изучения газового разряда и его обширное применение, пока еще не создана окончательная теория разряда, включающая в себя все виды, результаты которой удовлетворительно совпадали бы с экспериментальными фактами. Поэтому любое уточняющее исследования дает свой вклад в развитие этого направления.
Историческая справка
Само название разряд произошло от названия медленно протекающего процесса потери заряда заряженными металлическими телами, расположенными на подставке из изолятора.
Кулон доказал, что заряд стекает с проводника через воздух, то есть имеет место газовый разряд. Разряд при низких давлениях воздуха открыл и исследовал Фарадей – этот разряд стал известен как тлеющий. В конце XIX века исследование проводимости разреженных газов привело Дж. Дж. Томсона к открытию первой элементарной частицы – электрона, а дальнейшие исследования физики газового разряда во многом послужили экспериментальной основой атомной и квантовой физики [14].
Основателем физики газового разряда является Таунсенд, создавший теорию пробоя газа и установивший закономерности ионизации. Весьма значительный вклад в физику газового разряда был внесен Ленгмюром, который ввел фундаментальное понятие – плазма, а также развил методы исследования плазмы, в частности, метод зондов.
Современная физика термин газовый разряд определяет не только как процесс протекания тока через газ, но и любой процесс возникновения ионизации газа под действием приложенного электрического поля. При этом поле может быть не только постоянным во времени, но и быстропеременным – высокочастотным (ВЧ-разряд), сверхвысокочастотным (СВЧ-разряд) и даже оптического диапазона (оптический разряд). В последнее время был открыт пучково-плазменный разряд, загорающийся при прохождении электронного пучка через газ малой плотности вследствие возникновения в такой системе плазменных колебаний СВЧ-диапазона [13].
1. Емкостной высокочастотный разряд
1.1 Общие сведения о газовом разряде
В обычных условиях воздух и другие газы являются хорошими изоляторами. Если взять два металлических электрода, разделенных между собой небольшим воздушным промежутком, и подключить их к источнику тока, то цепь окажется разомкнутой, но если в воздушном промежутке имеются заряженные частицы – ионы и электроны, то под действием электрического поля они двигаются к электродам.
Заряженные частицы могут образовываться вследствие фотоэффекта при освещении электродов ультрафиолетовым светом, при прохождении через воздушный промежуток рентгеновских или космических лучей и т.д. Прохождение тока через промежуток между электродами происходит только в присутствии источника, вызывающего появление заряженных частиц. Такой разряд называется несамостоятельным. Он прекращается, когда убирают источник ионизации [8].
При достаточно высоком напряжении на электродах возникает самостоятельныйгазовый разряд. Под действием электрического поля между электродами заряженные частицы в воздушном промежутке приобретают значительную кинетическую энергию, которую передают при упругих соударениях молекулам газа, а также электродам. В результате за счет энергии источника тока происходит разогревание газа и электродов. Число заряженных частиц в воздушном промежутке начинает резко возрастать за счет ионизации атомов и молекул и эмиссии заряженных частиц с электродов. Начавшийся газовый разряд сам поддерживает себя и не нуждается во внешних источниках ионизации. Газ, имеющий высокую температуру и состоящий из заряженных и нейтральных частиц, называется плазмой. При самостоятельном газовом разряде между электродами всегда образуется плазма.
Для возникновения газового разряда достаточно приложить к электродам высокое напряжение. Для пробоя воздушного промежутка в несколько миллиметров нужно напряжение около 10 кВ. Пробойное напряжение при атмосферном давлении растет с ростом ширины промежутка. Зависит оно также от формы электродов. Промежуток между остроконечными электродами пробивается при более низком напряжении, чем промежуток между плоскими электродами [6].
1.2 Тлеющий разряд
Тлеющий разряд – это самоподдерживающийсяразряд с холодным катодом, испускающим электроны в результате вторичной эмиссии, главным образом под действием положительных ионов [7].
емкостный разряд ленгмюр зонд
Рис. 1. Тлеющий разряд
Его отличительным признаком является существование вблизи катода слоя определенной толщины с большим положительным объемным зарядом, сильным полем у поверхности и значительным падением потенциала 100–400 В и более. Оно называется катодным падением. Толщина слоя катодного падения обратно пропорциональна плотности или давлению газа. Если межэлектродное расстояние достаточно велико, между катодным слоеми анодом образуется электронейтральная плазменная область, где поле относительно небольшое. Серединную, однородную часть ее называют положительным столбом. От анода он отделяется анодным слоем.
Положительный столб тлеющего разряда постоянного тока – наиболее ярко выраженный и распространенный пример слабо ионизированнойнеравновесной плазмы, которая поддерживается электрическим полем. В отличие от катодного слоя, без которого тлеющий разряд существовать не может, положительный столб не является его неотъемлемой частью. Если в результате образования катодного слоя промежуток между электродами оказывается исчерпанным, столба нет. Но если не хватает расстояния на формирование должного катодного слоя, тлеющий разряд не загорается.
1.3 Способы возбуждения высокочастотных разрядов
Под высокочастотным (ВЧ) обычно понимают используемый в разрядной практике диапазон частот f = ω/2π~ 1 ÷ 100 МГц. Все виды ВЧ разрядов можно разбить на две большие группы, различающиеся способами возбуждения ВЧ поля в разрядном объеме: индукционные и емкостные [8].
Индукционные методы основаны на использовании явления электромагнитной индукции, в результате чего линии возбужденного электрического поля оказываются замкнутыми, а само поле – вихревым. При емкостном способе ВЧ напряжение от генератора подается на электроды, линии электрического поля начинаются и заканчиваются на них, а поле является с большой степенью точности потенциальным.
Простейшая и наиболее распространенная схема индукционного разряда показана на рис. 1.а.
а) б) в) г) д)
Рис. 1 Основные схемы возбуждения индукционного (а) и емкостных (б-д) разрядов: б – с плоскими оголенными электродами; в-с плоскими изолированными электродами; г – электроды вынесены за пределы разрядной камеры; д – одноэлектродный разряд (вторым «электродом» служит земля).
Через катушку-соленоид, которая может состоять из нескольких или даже одного витка, пропускают вырабатываемый генератором ВЧ ток. Магнитное поле тока, также переменное, внутри катушки направлено вдоль ее оси. Под его действием внутри индуцируется кольцевое электрическое поле, замкнутые линии которого концентричны с первичным ВЧ током. Это электрическое поле может возбуждать и поддерживать разряд в газе. Для этого внутрь соленоида помещают диэлектрическую трубку или сосуд, наполненные исследуемым газом при нужном давлении. Часто газ прокачивают по трубке, и тогда из нее вытекает плазменная струя. Индукционный разряд является безэлектродным.
Простейшие и широко распространенные схемы емкостного разряда показаны на рис. 1 (б и в). В сосуд с исследуемым газом при определенном давлении помещают два плоских параллельных электрода и к ним прикладывают напряжение от ВЧ генератора. Электроды могут быть одинаковыми, могут быть разных площадей, что бывает полезным для практических целей. Поскольку для переменного тока электрическая цепь проводников не обязательно должна быть замкнутой и может содержать непроводящие участки, электроды можно изолировать от проводящей разрядной плазмы диэлектриками, как показано на рис. 1.г.
Разряд между изолированными электродами (рис. 1.в, г)можно, как и индукционный, назвать безэлектродным в том смысле, что разрядная плазма не соприкасается с электродами. Если интересоваться сущностью физических процессов, то между схемами электродного (рис. 1.б) и «безэлектродного» (рис. 1.в, г)емкостных разрядов нет принципиальной разницы. В отношении определяющих процессов и металл, и диэлектрик, соприкасающийся с ионизированным газом ВЧ разряда, ведут себя одинаковым образом.
Индукционный способ обычно используют для поддержания ВЧ разряда при высоких давлениях (порядка атмосферного). Важнейшей областью применения индукционных ВЧ разрядов является создание чистой плотной низкотемпературной равновесной плазмы типа дуговой с давлением Р~1 атм. и температурой T~10000К. Индукционный ВЧ разряд используется для производства сверхчистых тугоплавких материалов, абразивных порошков и др.