Смекни!
smekni.com

Резонатор на основе прямоугольного волновода (стр. 2 из 3)

(10)

Поскольку волна типа Етп имеет критическую длину


(11)

из равенства (10) получаем формулу для расчета резонансной длины волны колебания типа Етпр в прямоугольном объемном резонаторе

(12)

В практических расчетах часто используют также соответствующую резонансную частоту

(13)

Если допустить, что по прямоугольному волноводу распространяется волна типа Нтп, то аналогичным образом в замкнутой полости возникают колебания типа Нтпр. Совершенно очевидно, что их резонансные длины волн и резонансные частоты определяются выражениями (12) и (13).

Следует отметить, что в выражения (12) и (13) размеры

,
и
относящиеся к осям х, у и zсоответственно, входят совершенно равноправно. Поскольку известно, что некоторые индексы типов волн в волноводе могут быть равны нулю, возникает вопрос о том, существуют ли резонаторные моды с индексом
.

Если

, то поле в резонаторе не меняется вдоль оси z. Обратимся к волноводной волне типа Етп. Здесь силовые линии электрического вектора в продольном разрезе имеют конфигурацию, показанную на рис. 3а для случая п=1. Данный рисунок отвечает случаю, когда рассматриваемый тип волны является распространяющимся, т. е.
. Если же значение
стремится к
, то длина волны в волноводе стремится к бесконечности исиловые линии вектора напряженности электрического поля приобретают вид «нитей», параллельных оси z(рис. 3б).

Рис.3. К вопросу о существовании колебаний типа Emn0

В пределе при

электрический вектор имеет лишь z-ю составляющую и граничные условия на двух идеально проводящих торцевых стенках резонатора выполняются автоматически независимо от расстояния
между ними. Таким образом, моды типа Етп0 в прямоугольном объемном резонаторе возможны.

Обратимся теперь к колебаниям Н-типа. Здесь исходная волна типа Нтп в волноводе, по определению, имеет электрические векторы, лежащие лишь в поперечной плоскости. Если все составляющие векторов поля не будут меняться вдоль оси z, как это должно быть в случае резонаторной моды типа Нтп0, то поле в любой точке резонатора должно обратиться в нуль, поскольку граничные условия на стенках с координатами z=0 и z=lвыполняться не могут. Таким образом, в прямоугольном объемном резонаторе колебания типа Нтп0 физически не существуют.

Итак, классификация типов колебаний в прямоугольном объемном резонаторе включает в себя следующие этапы:

• одна из осей резонатора принимается за продольную ось регулярного прямоугольного волновода;

• устанавливается, какой тип волны, Етп или Нтп , существует в таком волноводе;

• определяется значение индекса р — число стоячих полуволн, которые укладываются между торцевыми стенками.

Следует заметить, что такой принцип классификации в значительной степени условен, так как связан с произвольным выбором продольной оси регулярного прямоугольного волновода. Чтобы уяснить это, обратимся к рис. 4а, на котором изображена уже знакомая картина силовых линий векторов электромагнитного поля для колебания типа Н101. Если теперь резонатор повернуть в пространстве таким образом, чтобы ребро с размером

было ориентировано вдоль оси у (рис. 4б), то этот же самый электромагнитный процесс должен быть назван колебанием типа E110. Легко проверить, что резонансные длины волн для обоих названных типов колебаний одинаковы.

Рис. 4. К вопросу об условном характере классификации типов колебаний в прямоугольном объёмном резонаторе

Понятие основного типа колебаний

На практике обычно стремятся к тому, чтобы при заданной резонансной частоте геометрические размеры колебательной системы были минимальными. Этого удается достичь возбудив в резонаторе колебание основного (низшего) типа. Так принято называть моду с наибольшей резонансной длиной волны при фиксированных размерах резонансной полости.

Индексы m, п, р для основного типа колебаний, очевидно, должны подбираться так, чтобы предельно уменьшить знаменатель в формуле (2). Ясно, что один из индексов при этом должен быть равен нулю, а два оставшихся — единице. Нулевой индекс соответствует той декартовой оси, вдоль которой ориентировано ребро с наименьшей длиной.

Следует отметить, что в объемных резонаторах могут существовать вырожденные моды, у которых резонансные длины волн совпадают, несмотря на то что структуры поля совершенно различны. Примером могут служить колебания типов Е351 и Н135 в резонаторе кубической формы.

Структура электромагнитного поля в прямоугольном резонаторе

Строгий подход к проблеме собственных колебаний электромагнитного поля в замкнутой полости прямоугольной формы с идеально проводящими стенками основан на поиске комплекснозначной функции

, которая удовлетворяет однородному уравнению Гельмгольца

(14)

во всех внутренних точках резонатора. Это векторное уравнение есть сокращенная форма записи трех скалярных уравнений относительно декартовых проекций

(символом а обозначены х, у или z):

(15)

Проведенное ранее исследование наводит на мысль о том, что среди всевозможных решений таких уравнений должны быть особо выделены функции вида трехмерных стоячих волн

~
(16)

со всевозможными комбинациями трех гармонических сомножителей. Прямая подстановка выражения (16) в уравнение (15) приводит к следующему выводу: уравнение Гельмгольца для резонатора имеет решение не при любом значении коэффициента фазы

, а лишь в том случае, когда этот параметр принадлежит дискретной совокупности, определяемой выражением

(22)

где m, n, p – положительные целые числа, не равные нулю одновременно. Отсюда естественным образом вытекает полученное ранее соотношение для расчета резонансных длин волн вида (12).

Теперь учтем, что на идеально проводящих стенках резонатора касательные составляющие электрического вектора должны обратиться в нуль. В развернутой форме это требование означает, что

при

при
(18)

при

Равенства (18) позволяют конкретизировать допустимые решения и записать их так:

(19)

где А, В, С—не известные пока коэффициенты.

Далее следует принять во внимание то, что проекции электрического вектора внутри резонатора обязаны не только удовлетворять уравнению Гельмгольца (15), но и соответствовать векторному полю без источников, для которого

(20)

Подставив выражения (19) в формулу (20), приходим к выводу о том, что между амплитудными коэффициентами должна существовать линейная связь

(21)

Будем рассматривать поле колебания типа Emnp, для которого

или в соответствии со вторым уравнением Максвелла

Отсюда получаем ещё одно уравнение связи

(22)

Решая систему алгебраических уравнений (21) и (22) относительно неизвестных A и B, получаем

(23)

Итак, комплексные амплитуды проекций вектора напряженности электрического поля для колебания типа Emnp в прямоугольном объёмном резонаторе имеют вид