Сучасний етап вивчення рідких кристалів, який почався в 60-і роки і додав науці про РК сьогоднішні форми, методи досліджень, широкий розмах робіт сформувався під безпосереднім впливом успіхів в технічних додатках рідких кристалів, особливо в системах відображення інформації. В цей час зрозуміло і практично доведено, що в наше століття мікроелектроніки, що характеризується впровадженням мікромініатюрних електронних пристроїв, споживаючих нікчемні потужності енергії для пристроїв індикації інформації, тобто зв'язки приладу з людиною, найбільш відповідними виявляються індикатори на РК. Річ у тому, що такі пристрої відображення інформації на РК природним чином вписуються в енергетику і габарити мікроелектронних схем. Вони споживають нікчемну кількість потужності і можуть бути виконані у вигляді мініатюрних індикаторів або плоских екранів. Все це зумовлює масове впровадження рідкокристалічних індикаторів в системи відображення інформації, свідками якого ми є в теперішній час. Щоб усвідомити цей процес, досить пригадати годинник або мікрокалькулятори з рідкокристалічними індикаторами. Але це тільки початок. На зміну традиційним і звичним пристроям йдуть рідкокристалічні системи відображення інформації. Частобуває, технічні потреби не тільки стимулюють розробку проблем, пов'язаних з практичними застосуваннями, але і часто примушують переосмислити загальне відношення до відповідного розділу науки. Так відбулося і з рідкими кристалами. Зараз зрозуміло, що це найважливіший розділ фізики стану, що конденсує.[1]
1.3 Основні поняття
Рідкі кристали – це рідини, для яких характерним є певний порядок розміщення молекул і, як наслідок цього, анізотропія механічних, електричних, магнітних та оптичних властивостей. І хоч рідкі кристали поєднують у собі властивості твердого тіла та ізотропної рідини, електро- і магнітооптичні явища в них досить специфічні і, як правило, не мають відповідних аналогів у твердій та ізотропній рідкій фазах. Якщо немає зовнішніх дій, в рідких кристалах має місце анізотропія діелектричної проникності, магнітної сприйнятливості, електропровідності та теплопровідності. У них спостерігається подвійне заломлення світлових променів та дихроїзм. [4]
1.4 Способи одержання рідких кристалів
Необхідною умовою прояву мезоморфізму є існування геометричної анізотропії молекул. Які повинні бути довгими і порівняно вузькими. Залежно від геометрії молекул система може проходити через одну або кілька мезофаз до переходу в ізотропну рідину. Переходи в ці проміжні стани можуть спричинятися суто термічними процесами (термотропний мезоформізм) або впливом розчинника (ліотропний мезоформізм).
У рідких кристалів після досягнення певної температури руйнується тривимірна гратка, але вони після цього не переходять у рідкий ізотропний стан, а зберігають дво- або одновимірну впорядкованість внаслідок анізотропії молекул. Відкриття рідких кристалів було пов’язано з тим, що при плавленні деяких речовин замість прозорого розплаву утворюється мутний. Мутність його зумовлена невпорядкованим подвійним променезаломленням подібно до кристалів кварцу та ісландського шпату. З підвищенням температури у таких речовин спостерігається перехід до звичайного ізотропного прозорого розплаву.
Як уже зазначалося, за способом одержання рідкі кристали поділяють на термотропні і ліотропні. Термотропні рідкі кристали утворюються при нагріванні твердих кристалів або охолодженні ізотропної рідини і існують у певному інтервалі температур. Ліотропні рідкі кристали утворюються при розчиненні твердих органічних речовин у різних розчинниках, наприклад у воді. Термотропні і ліотропні рідкі кристали мають кілька модифікацій рідкокристалічних фаз, кожній з яких на фазовій діаграмі відповідає певна область. Температурний інтервал існування рідкокристалічних фаз залежить від речовини і може знаходитись як при низьких (до -60°С), так і при високих температурах (до 400°С).
Рис. 1
На рис. 1 зображено молекулу типового термотропного рідкого кристала, що подібна до стержня. Характерним для таких кристалів є наявність двох або трьох бензольних кілець. До ліотропних рідких кристалів належать системи мило–вода; це розчин так званих амфифільних сполук. Кожна молекула таких речовин має полярну „голову”, яка розчинна у воді і нерозчинна у вуглеводах. Друга частина молекули – це вуглеводневий ланцюжок, який не розчиняється у воді. Це призводить до виникнення ламелярних (шаруватих) фаз у водних розчинах. В яких полярні „голови” повернуті до прошарків води, а вуглеводневі ланцюжки повернуті один до одного, утворюючи бішар (рис. 2).
Рис.2
Напрям переважаючого орієнтування молекул характеризують одиничним вектором L, який називають директором.[5]
1.5 Типи рідких кристалів
Термотропні рідкі кристали, за класифікацією французького хіміка-мінеролога Ш.Фріделя (1832-1899), поділяють на три типи: нематичні, смектичні та холестеричні. В основу такої класифікації покладено вигляд функції густини ρ і локальної орієнтації L молекул.
Для нематичного типу структури рідких кристалів ρ=constі L=const. У такому кристалі молекули довгими осями спонтанно орієнтовані майже паралельно одна одній (рис. 3).
Рис .3Рис. 4
Для смектичного типу структури функція L=const, а ρ періодична вздовж осі, наприклад OZ, і стала у площиніXOY (рис. 4). Цей тип структури характеризується двовимірною впорядкованістю молекул при паралелізації їх та ранжуванні центра мас молекул. Смектичні рідкі кристали мають шарувату структуру. Можливі різні типи упаковок молекул у шарах, внаслідок чого смектичні рідкі кристали мають велику кількість модифікацій.
Найскладніший тип упорядкування для холестеричних рідких кристалів, що характеризуються сполученням паралельних нематичних шарів. Напрям осей молекул у кожному з наступних шарів повернутий на певний кут відносно напрямів цих осей у попередніх шарах. Для таких систем ρ=const,а L модульовано за напрямом так, що кінці векторівL утворюють гвинтову лінію у вигляді спіралі з певним кроком (рис. 5). У площині XOY холестерині рідкі кристали мають таку ж плинність. Як і нематичні рідкі кристали. А вздовж осіOZ їхні механічні властивості подібні до властивостей смектичних рідких кристалів. Внаслідок такого упорядкування холестерині рідкі кристали мають унікальні оптичні властивості.
Рис. 5
Оскільки крок спіралі для різних холестеричних рідких кристалів має величину від десятих долей мікрометра до нескінченності, то видиме та інфрачервоне світло дифрагує на таких структурах, що зумовлює селективне відбивання світлових хвиль, які поширюються у напрямі осі OZ. За межами інтервалу довжин хвиль, для яких має місце селективне відбивання, холестерині рідкі кристали мають значну оптичну активність (у 102 -103 разів більшу, ніж у органічних рідин у твердих кристалів). Прикладом холестеричних рідких кристалів є ефіри холестерину.
Ліотропні рідкі кристали мають більш складну структуру, ніж термотропні. Ліотропні рідкі кристали досить поширені у природі, особливо в живих організмах (мембрани клітин, віруси тощо).
Виявлено новий тип рідких кристалів, які утворюються дископодібними молекулами.
Рідкі кристали містять складні анізотропні молекули, і тому практично неможливо врахувати всі види взаємодії між ними. При розгляді окремих випадків враховують такі типи міжмолекулярних сил: взаємодію сталих диполів; дисперсійну взаємодію молекул, розглядуваних як дипольні осцилятори. Зумовлені притяганням між молекулами; стеричне відштовхування, зумовлене скінченними розмірами молекул у моделях жорстких важких стержнів або ланцюжків жорстких кульок; індукційну взаємодію сталого молекулярного диполя з диполями, наведеними в молекулах, що оточують їх.
Анізотропія електричних і оптичних властивостей поряд з властивістю плинності рідких кристалів зумовлює різноманітність електрооптичних ефектів. Найбільш важливі орієнтаційні ефекти, зумовлені впливом зовнішнього електричного поля на орієнтацію молекул у рідких кристалах. Ці явища вперше виявив В.К.Фредерікс і їх називають переходами Фредерікса.
Електрооптичні властивості рідких кристалів лежать в основі широкого застосування їх. Зміна орієнтації L у нематичному рідкому кристалі вимагає електричної напруги порядку 1В і потужності порядку 1мкВт, що можна забезпечити безпосереднім передаванням сигналів з інтегральних схем без їхнього додаткового підсилення. Тому рідкі кристали широко застосовуються в малогабаритних електронних годинниках, калькуляторах, вимірювальних приладах як індикатори і табло для відображення відповідної інформації. В комбінуванні з фото чутливими напівпровідниковими шарами рідкі кристали застосовуються як підсилювачі і перетворювачі зображень, а також як пристрої оптичної обробки інформації.