Смекни!
smekni.com

Кинетические уравнения Власова (стр. 3 из 6)

Пусть g — определитель матрицы gij. Вместо f в (2.5) введем новую функцию распределения

F{x,v,s) = F(x,v,s)/g.


Упражнение

Показать, что для новой функции распределения уравнение эволюции бездивергентно и имеет вид

Решение

Воспользуемся операцией дифференцирования определителя. При этом второе слагаемое в (2.5) преобразуется следующим образом:

В (a) используется тождество

Для новой функции распределения число частиц записывается в виде

Поэтому g dxdv есть инвариантная мера: F не растет, т.е. полная производная от неё есть ноль, и поскольку число частиц сохраняется, то мера g dxdv сохраняется тоже.

Вывод. В качестве переменных в функции распределения можно брать импульсы или скорости, а в качестве времени — время или интервал s. Для простоты уравнений брали интервал, который в теории относительности называется собственным временем[7]. Возможность выбрать s в качестве параметра означает синхронизацию собственного времени различных частиц. С этим связан парадокс близнецов. Тот из них, чей интервал (собственное время) меньше, т.е. который «двигался больше», оказывается младше. Поэтому использование s хотя формально и возможно, но делает затруднительным интерпретацию результатов.

2.3 Как ведет себя мера риманова пространства при преобразованиях

Пусть проведена замена координат хк = f (

). Как преобразуется при этом метрика? Имеем:

Поэтому

где J — это det (дxi/д
), Отсюда следует, что так как dx = |J|d
, то
=
, т.е.
—инвариант преобразований.

Дифференцируя по параметру, имеем

, а поэтому dV=|J|dv. Отсюда следует, что g dxdv =
- инвариантная мера, где каждый из сомножителей инвариантен при преобразованиях.

Вывод. В качестве переменных функции распределения удобно брать импульсы. В качестве параметра

возьмем время, в качестве переменных функции распределения — t (время), х (пространственная координата), р(импульсы): f= f(t,x,p).

2.4 Вывод уравнения Власова-Максвелла

Система уравнений Власова-Максвелла описывает движение частиц в собственном электромагнитном поле. Стартуем с обычного действия для электромагнитного поля[8], действия Власова-Максвелла или Лоренца (по повторяющимся верхним и нижним индексам идет суммирование):

(4.1)

где Sр означает действие частиц (particles), Sf — действие полей (fields), Sp-f — действие частиц-полей (particles-fields).

Здесь а означает сорт частиц, отличаемый по массе mа и заряду еa, q нумерует частицы внутри сорта,

(q.t) (
= 0,1.2,3; q =1,...,Na; a=1..... r) — 4 координаты q-й частицы copтa a, Au(x) — потенциал,
— электромагнитные поля,
- метрика Минковского:
, т.е. диагональная матрица с 1 на первом месте и (-1) на остальных. Варьирование проводим специальным способом: сначала получаем движение частицы в поле, потом поля с заданными движениями частиц. Однако для частиц мы перейдем к функциям распределения, что и даст искомую систему уравнений.

1. Варьирование Sp + Sp+f по координатам

(q.t)) даст уравнение движения зарядов в поле. Перепишем
для метрики Минковского (в дальнейшем греческие индексы
,
пробегают четыре значения:
= 0,1,2,3; латинские i,j —три: i = 1,2,3):

где Lp, — лагранжиан частиц.

Здесь

(i = 1,2,3) — трехмерный квадрат скорости, и мы учли, что х° = ct и вынесли с2 из-под корня. Проварьируем это выражение (опуская а):

Варьируем Sp-f (снова опускаем а):

Отсюда из условия

= 0 получаем уравнение движения заряженной частицы в поле:

уравнение больцман власов динамический модельный


где

2. Уравнение для функции распределения получается как уравнение сдвига вдоль траекторий полученной динамической системы движения зарядов в поле. Видно, что удобно взять функцию распределения oт импульсов, а не от скоростей. При этом надо выразить скорости через импульсы:

Обозначая

получаем
=
Отсюда находим уравнение для функции распределения fa(x,p,t) (аналог 1.4):

(4.2)

Здесь

Использовано, что

В это уравнение записано для ионов и электронов в следующем виде:

(4.3)

Здесь fi(t, р, х) — функция распределения ионов по пространству и импульсам в момент времени t (i в (4.3) — первая буква слова ion. а не индекс), fе(t, р, х) — функция распределения электронов, ze — заряд иона, (—е) — заряд электрона, [v, B] — векторное произведение. Не выписано выражение v через р, однако часто его берут классическим: vаj = pj/ma , и тогда удобно записать уравнения через функцию распределения f(t, v, х) по скоростям вместо импульса. В записи (4.3) v надо брать различными для электронов и ионов, т.е. (4.3) требует уточнения, где vi , а где vc вместо v, и каковы эти функции, как функции импульса vi(p) и vc(p).

3. Уравнение для полей. Используем функцию распределения вместо плотности. Сначала надо переписать Sp-f через функцию распределения, совершив переход

после чего Sp-f запишется в виде

Теперь варьируем по потенциалам Аu(х):

Полагаем

и получаем

(4.4)

Система (4.2), (4.4) и есть система уравнений Власова-Максвелла.

Замечание 1. Уравнения (4.4) являются второй парой уравнений Максвелла, а первая следует из равенств

что записывается в эквивалентном виде на языке дифференцирования кососимметрических тензоров
Первая пара уравнений Максвелла записывается в виде

Замечание 2. При выводе уравнений Власова-Максвелла по схеме Боголюбова мы должны были бы стартовать с гамильтоновых систем с потенциалами Лиенарта-Вихерта (запаздывающие потенциалы). Для слабого релятивизма соответствующий лагранжиан называется лагранжианом Дарвина.