В результате приходим к следующей системе соотношений, приводящих исходную систему к полностью безразмерному виду: один из параметров L = r̃, или T = t̃ является свободным, L = cT, P = p̃ = m0v0. Функции, входящие в систему, имеют своими масштабными коэффициентами следующие величины: Q̃ = 2N/(LTP), f ̃ = 2N/(LP), J̃= – |e|N/T, Ẽ = 4π|e|N, а единственный параметр, остающейся сомножителем перед Ε, – ε можно выразить как через начальные данные: ε = 4πreLN, так и через широко используемые (ωплаз)2 = 4πrec2n – плазменную частоту и νист = 1/T – частоту источника: ε = υ0(ωплаз/νист)2.
Приведенная таким образом к безразмерному виду исходная система приобретает вид:
(1) (2)Первой задачей анализа системы (1-2) будет получение явных формул для
путём разложения его в ряд по степеням ε, что сведёт дальнейшее решение уравнения (1) к решению классического уравнения первого порядка.3.4 Алгоритм разложения решения системы по параметру ε
Далее, на первом этапе исследования, при получении формул для E(t, z), нам потребуются производные всех порядков от временной компоненты источника F(t). Считаем, что она является действительной аналитической функцией. Зависимость v = v(p) полагаем аналитической по тем же причинам: как классическая, так и квантовая её модели, разумеется, этим свойством обладают, а для построения решения удобнее рассматривать сразу общий случай υ = υ(π) произвольного диффеоморфизма луча π > 0 на луч υ > 0 либо на интервал 0 < υ < υ0.
Поиск начального приближения
уравнения (1) приводит к формулам:Далее, не обговаривая специально, удобно придерживаться следующих обозначений: χ = τ – ζ/υ, χ0 = τ – ζ/υ0, τ – (ζ – υ(τ – τ̃))/υ0 = χ̃0, χ̃ = χ.
Пусть
. Разложив по степеням ε произведение εE φ’ и приравнивая, друг другу коэффициенты при всех последовательных степенях, получаем, как обычно, бесконечную серию уравнений, зацепленных каждое только заодно другое своими правыми частями – последовательными источниками частиц, испытавших данное число взаимодействий (соударений). Начальное уравнение цепочки (с S0 = Sext для φ0) уже выписано. Основным для дальнейшего будет то, что левая часть у всех последующих уравнений одинакова. Правые части их имеют следующий вид: . Тождественность операторов , порождающих все уравнения, позволяет следующим образом записать их решения φn, в операторной форме: , где , а – это оператор сдвига по характеристике (невозмущённого) уравнения переноса: ζ → ζ – υ(τ – τn+1). Далее Εm – это оператор умножения на соответствующую функцию, а ; таким образом в развёрнутой записи имеем соотношение . В последней формуле дифференцирования по dπ отмеченного υ = υ(π) НЕ производится.На этом пути получаются весьма громоздкие явные выражения для поправок φn при малых n .
Из них для J1(τ, χ0) и Ε1(τ, χ0) получаются весьма простые выражения: Подчеркнем, что простота полученных формул есть следствие того, что для данной задачи оператор обращения уравнений Максвелла – это просто интегрирование по dτ от 0 до τ. В результате и все поправки высших порядков выразятся как полиномы от τ с коэффициентами, зависящими только от Ε0(χ0) и её производных. Формула для Ε1(τ,χ0) уже выписана,Ε2(χ0)=
, а Ε3(χ0)=Далее естественно было предположить, что и общая формула для поправки к Ε(τ,χ0) порядка n будет иметь аналогичный вид:
Εn(τ,χ0) =
,где
– полином степени k от , на что указывает показатель степени υ0 в знаменателях его коэффициентов. То, что получатся именно полиномы, а не мономы, как при малых n, угадывается при анализе характера упрощений в полученных формулах при переходе от функции распределения к току электронов; уже при n = 4 в коэффициент при , войдёт сумма A + B с наперед неизвестными значениями A и B.3.5 Операторы Власова порядка n
Обобщение полученных при малых n результатов на поправки к полю высших порядков проводится по той же схеме явного вычисления, но требует дополнительных рассмотрений в новых обозначениях. Например, наглядное, но нестрогое обозначение υ использованное выше, естественно теперь заменить на уже введённые конструкции
и , обозначив их через и – и назвав соответственно импульсным и скоростным операторами Власова (чьё уравнение и порождает данную модельную задачу) порядка n. Ещё раз подчеркнем, что в дискретном случае и будут отвечать за взаимодействие с электромагнитным полем частиц, уже n раз провзаимодействовавших с полем.Записав с их помощью начальный отрезок разложения поля Ε в ряд по ε, получаем следующее выражение полного поля Ε через невозмущённое поле Ε0:
Связь скобок – а в них соответственно по 2(n-1) слагаемых – в данной формуле с введенными в предыдущем разделе величинами Εq очевидна, но их внутренняя структура нетривиальна. Например, последнюю из них – Ε3 (и, как очевидно, все последующие) разбить на q компонент можно как минимум двумя способами с различными смысловыми интерпретациями слагаемых.
Во-первых, Εq =
, где индекс m соответствует номеру φm от которого берётся производная по импульсу. В этом случае получаем:что означает различение взаимодействий частиц с полями различных порядков (индексов). Во-вторых, то же разложение пишется в симметричной форме:
, (3)где учитывается только общее число взаимодействий частиц с полем.
Первая форма записи разложения позволяет последовательно находить интегральные соотношения между различными компонентами поля
: , и так далее рекуррентно. Но общую формулу для Εn получить этим путем затруднительно.3.6 Общая формула для поправки к полю порядка n
Вторая форма записи разложения (3) позволит найти эту общую формулу. Рассмотрим операторный вид общей её формы:
, (4)и аналогично для φ, но без оператора
, решающего систему Максвелла.Заметим, что в каждой внутренней сумме
слагаемых, поскольку операторы Власова различных порядков не коммутируют. То есть, φn является суммой δ-функции и её n первых производных с соответствующими коэффициентами (в которые входят Εν для ν=1,…,(n - 1) ). Такое представление одной из компонент решения задачи – φ, очевидно, плохо тем же, чем плохо представление решения произвольного интегрального уравнения через определители Фредгольма: своей необозримостью. Для того чтобы избегнуть подобной ситуации, надо упростить формулу (4) так, чтобы далее привести задачу определения φ к стандартной.При упрощении формулы (4) коэффициенты, при последовательных степенях τk, зависящие от υ и её производных по dπ оказываются удовлетворяющими рекуррентному соотношению:
= + (n–1+k) . Здесь оператор = ’ + ’’ +… .