Смекни!
smekni.com

Кинетические уравнения Власова (стр. 1 из 6)

Дипломная робота

Пояснительная записка

«Кинетические уравнения Власова»

Студент группы Иванов И.И.

Руководитель работы Пересечанский В.М.

Заведующий кафедры "Математики"

Певнев В.Я.

2011


Утверждаю

Заведующий кафедрой

математики

Певнев В.Я.

"02" февраля 2011 г.

Задание на дипломную роботу

студенту Иванову Ивану Ивановичу пятого курса

1. Тема роботы: «Кинетические уравнения Власова»

Утверждена приказом

2. Срок сдачи студентом оконченной работы

3. Содержание пояснительной записки (перечень вопросов, которые подлежат рассмотрению): рассмотреть общие понятия кинетических уравнений, рассмотреть и вывести кинетические уравнения Власова, решить и описать одномерную модельную задачу для уравнения Власова

Дата выдачи задания

Руководитель работы Пересечанский В.М.

Задание к выполнению принял


Согласовано Утверждаю

Руководитель дипломной работы Заведующий кафедрой

Пересечанский В.М. Певнев В.Я.

2011г. 2011г.

Календарный план дипломной работы

студента Иванова Ивана Ивановича

тема «Кинетические уравнения Власова»

Содержание работы Срок исполнения (дата) Отметка о выполнении(дата)
1. Изучение литературы.2. Анализ выбранной темы.3. Обоснование актуальности темы.4. Вопросы специального 1-го раздела_-“- 2-го раздела_-“- 3-го раздела5. Устранение замечаний консультантов и руководителя.6. Оформление пояснительной записки.7. Предоставление работы на кафедру.8. Предоставление работы на рецензию.9. Предоставление работы на защитыв ГЭК 25.0210.0315.0329.0305.0520.0530.0511.0612.0623.0630.06 Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.Выполнено.

Студент группы: Иванов И.И.

2011 г.

План

Перечень условных сокращений и аббревиатур

Введение

Глава 1 Кинетические уравнения: основные понятия

1.1 Кинетические уравнения типа Больцмана

1.2 Уравнения типа Власова

Глава 2 Уравнение Власова-Максвелла, Власова-Эйнштейна и Власова-Пуассона

2.1 Сдвиг плотности вдоль траекторий динамической системы

2.2 Уравнения геодезических и эволюция функции распределения на римановом многообразии

2.3 Как ведет себя мера риманова пространства при преобразованиях

2.4 Вывод уравнения Власова-Максвелла

2.5 Схема вывода уравнения Власова-Эйнштейна

2.6 Система уравнений Власова-Пуассона для плазмы и электронов

Глава 3 Одномерная модельная задача для уравнения Власова

3.1 Условия

3.2 Постановка задачи

3.3 Математическая формализация задачи

3.4 Алгоритм разложения решения системы по параметру ε

3.5 Операторы Власова порядка n

3.6 Общая формула для поправки к полю порядка n

3.7 Классическое и релятивистское решения уравнения Власова

Заключение

Список литературы

Перечень условных сокращений и аббревиатур

ЭМП - Электромагнитное поле

Введение

Кинетические уравнения описывают эволюцию функции распределения F(t,v.x) молекул или других объектов (электронов, ионов, звезд, галактик или галактических скоплений) по скоростям v и пространству х в момент времени t. Это означает, что число частиц в элементе фазового объема dvdx есть F (t, v, x) dvdx.

Простейшее уравнение — уравнение свободного движения:

(1.1)

Цель данной дипломной работы — рассмотреть и проанализировать основные кинетические уравнения Власова, и на их основании рассмотреть модельную одномерную задачу Коши для уравнения Власова.


Глава 1 Кинетические уравнения: основные понятия

1.1 Кинетические уравнения типа Больцмана

Первым изученным кинетическим уравнением было уравнение Больцмана. Оно учитывает процессы столкновений добавлением интеграла столкновений в (1.1):

(1.2)

Интеграл столкновений J[F,F] — это квадратичный оператор, учитывающий парные столкновения частиц. Уравнение (1.2) было получено Максвеллом и Больцманом для вывода максвелловского распределения по скоростям, которое тогда только что было использовано для объяснения закона Менделеева – Клапейрона, который будет кратко рассмотрен далее.

Максвелловское распределение связано с одним из первых успехов уравнения Больцмана (1.2) — доказательством Н - теоремы.

Теорема утверждает, что функционал

для уравнения Больцмана не возрастает: dH/dt <= 0. Этот факт был интерпретирован Больцманом как доказательство возрастания энтропии (Н есть энтропия с обратным знаком), т.е. обоснования 2-го закона термодинамики.

Неравенство Н-теоремы верно не всегда. Условие равенства нулю скорости роста энтропии даст максвелловское распределение, поэтому Н-теорема обосновывает не только стационарность максвелловского распределения, но и стремление к нему, устойчивость этого распределения, а также 2-й закон термодинамики.

Однако уравнение Больцмана писалось Максвеллом для более широких целей. Программа Максвелла состояла в том, чтобы получить уравнения сплошной среды — типа уравнений Навье-Стокса — из уравнения Больцмана и тем самым получить коэффициенты переноса — вязкости и теплопроводности — и их зависимость от межмолекулярного взаимодействия. Ему это удалось для потенциала межмолекулярного взаимодействия U(r) = r -4 (максвелловские молекулы), когда интеграл столкновений сильно упрощается. Достичь аналогичных результатов для других потенциалов не удалось ни Больцману[1], ни Гильберту. однако это сделали Чэпмсн и Энског[2] с помощью специальной схемы теории возмущений (метод Чэпмсна-Энскога). Ставки здесь были очень высоки; такое решение давало бы (и дало: оно предсказало термодиффузию) количественные предсказания в молекулярно-кинетической теории, которая в то время подвергалась критике (в полемику включились не только ученые, например Мах и Авенариус, но и политики, например В.И. Ленин «Материализм и эмпириокритицизм». Чэпмсн и Энског «немного опоздали»: определение разными независимыми способами числа Авогадро с близкими ответами убедило ученых, и страсти улеглись.

В наше время это уравнение со своими следствиями работает в нескольких направлениях. Одно из них — средние слои атмосферы. Высокие слои хорошо описываются уравнением свободного движения (1.1) — газ Кнудсена или свободный газ. Низкие слои — уравнениями газодинамики, которые выводятся из уравнения Больцмана. Сопряжение хотя бы на ЭВМ верхних и низких слоев атмосферы — одна из актуальных задач[3] в связи с летательными аппаратами. Другое направление — химическая кинетика: моделирование смесей. Со всем этим связаны дискретные модели уравнения Больцмана

Широко используемым следствием уравнения Больцмана является уравнение переноса, описывающее рассеяние частиц на заданном фоне: это линейное уравнение Больцмана. Такие уравнения используются для описания переноса нейтронов в ядерных реакторах и переноса излучения в атмосфере, когда фотоны рассеиваются средой.

Предельным случаем уравнения Больцмана служит уравнение Ландау, когда наибольший вклад вносит сильное рассеянье вперед. Оно используется для описания плазмы.

Используются также квантовые аналоги уравнения Больцмана — уравнения Улинга-Уленбека. Для этих уравнений стационарными распределениями вместо максвелловского оказываются распределения Ферми-Дирака или Бозе-Эйнштейна.

Таким образом, можно представить иерархию уравнений типа Больцмана в виде следующей схемы:

Схема 1

Линии с вопросительными знаками означают, что соответствующие уравнения еще, может быть, не выведены (например, приближение Ландау для уравнения Улинга-Уленбека).

1.2 Уравнения типа Власова

Если уравнения типа Больцмана описывают короткодействующие взаимодействия, то уравнения типа Власова описывают дальнодействие.

Уравнения Власова или уравнения самосогласованного поля имеют вид:

(2.1)

Здесь сила f сама есть функционал от функции распределения, а уравнение (2.1) имеет вид уравнения сдвига вдоль характеристик. Простейший вид зависимости силы f от функции распределения соответствует парному потенциалу взаимодействия К(х, у):

(2.2)

Такой вид взаимодействия дает систему уравнений Власова. Обычно говорят о системах уравнений «Власова плюс ещё кого-то» для того, чтобы различать виды взаимодействий. Бывают уравнения Власова-Пуассона, Власова-Максвелла, Власова-Эйнштейна и Власова--Янга--Миллса.

Уравнение Власова-Пуассона бывает двух видов — для гравитации и для плазмы: в обоих случаях (2.2) заменяется на уравнение Пуассона действием оператора Лапласа, при условии, что К (х, у) — фундаментальное решение оператора Лапласа. Таким образом, К сеть потенциал единичного заряда в трехмерном случае, нити — в одномерном случае и плоскости — в двумерном.

Если в гравитационном случае мы заменяем взаимодействие по Ньютону на взаимодействие по Эйнштейну, то получаем уравнение Власова-Эйнштейна.

Если в случае плазмы мы заменяем электростатику на электродинамику, то получаем уравнения Власова-Максвелла. Если у нас сохраняется не заряд, а векторная величина (изотопический заряд или цвет), то вместо электромагнитных 4-иотснциалов мы должны взять матрицы, и получаем уравнения Янга-Миллса. Такие уравнения дают принятую в настоящее время теорию объединенного электрослабого и сильного взаимодействия. Таким образом, все уравнения чипа Власова дают следующую иерархию: