Смекни!
smekni.com

Эффекты нелинейного преломления (стр. 2 из 3)

С увеличением мощности излучения в волокне с отрицательной дисперсией ширина импульса увеличивается вследствие того, что длина волны на хвосте импульса оказывается короче длины волны на фронте импульса. А так как в волокне с отрицательной дисперсией скорость распространения волн уменьшается с уменьшением длины волны, то хвост импульса начинает отставать от фронта, и ширина импульса увеличивается.

Рисунок 7 – Чирп-эффект в волокне с отрицательной дисперсией


В волокне с положительной дисперсией (рисунок 8) хвост импульса (с более короткими волнами) ускоряется, а фронт (с более длинными волнами) замедляется, что и приводит к сжатию импульса. Следует учесть, что сжатие импульса имеет место только при не слишком большой мощности, когда уширение импульса из-за эффекта Керра ещё мало. При большой мощности уширение импульса (из-за эффекта Керра) становится уже основным фактором, определяющим ширину импульса при его распространении в волокне с дисперсией. Такой импульс уширяется независимо от знака дисперсии волокна.

При некотором промежуточном значении мощности в волокне с положительной дисперсией эффект Керра уравновешивает влияние дисперсии. Другими словами, в то время, как дисперсия пытается сделать импульс более широким, эффект Керра обеспечивает его сжатие. Если оба эффекта сбалансированы, то форма импульса не изменяется. Такие импульсы называются солитонами. Солитон (soliton) – оптический импульс, не подвергающийся дисперсии при передаче на дальнее расстояние. Их применение в оптической связи весьма перспективно и в настоящее время сдерживается только стремительным развитием DWDM систем.

Рисунок 8 - Чирп-эффект в волокне с положительной дисперсией


Перекрестная фазовая модуляция (ХРМ – Cross-Phase Modulation) очень схожа с SPM, но рассматривается уже применительно к двум и более оптическим каналам, то есть применительно к ВОСП со спектральным мультиплексированием (CWDM/DWDM системам). Точно также, как и при SPM, возникает изменение рефракционного индекса n при увеличении интенсивности света. В WDM-системах с большим количеством каналов изменение линейной частотной модуляции импульса в одном канале зависит от вариации показателя преломления из-за интенсивности других каналов, усиливая SPM. Так как канальные уровни мощностей в CWDM/DWDM системах примерно одинаковы, то при ХРМ эффекте эффект увеличивает нелинейный фазовый сдвиг примерно в 2N раз, где N – число задействованных оптических каналов в ОВ. ХРМ приводит к таким же искажениям импульсов, как и SPM, только еще в большей степени. Характерно отметить, что эффект ХРМ в большей степени зависит от дисперсии ОВ по сравнению с SPM, что в свою очередь обуславливает необходимость увеличения запаса по дисперсии.

Для снижения влияния ХРМ необходимо выбирать оптические волокна с максимально возможной эффективной площадью сечения (данное замечание относится ко всем видам искажений) и, по возможности, снижать канальный уровень оптической мощности (см. рисунок 9).

Рисунок 9 – Зависимость нелинейных эффектов от уровня оптической мощности


Важно также отметить, что ХРМ приводит также к появлению амплитудных искажений временного джиттера (рисунок 10). Эти искажения проявляются тем сильнее, чем выше скорость передачи и меньше интервал частот между каналами. Исследования в этом направлении стали интенсивно проводиться только в самое последнее время.

Рисунок 10 – Амплитудные искажения и временной джиттер оптических импульсов при XPM

Интермодуляция (IM – InterModulation) аналогична SPM и ХРМ, но рассматривается для нескольких каналов. Как и в выше рассмотренных случаях, величина рефракционного индекса изменяется пропорционально интенсивности оптической мощности. Так, например, если в ОВ присутствуют две независимые волны l1 и l2, то n будет изменяться синхронно их суммарной мощности, что вызовет появление комбинационных составляющих, то есть новых двух волн, близлежащих по частотному диапазону :

и
. Такое явление подобно множеству способов формирования нелинейности при четырехволновом смешении (FWM).

Модуляционная нестабильность (MI –Modulation Instabliting) наблюдается только в ОВ с положительной дисперсией. Во временном представлении MI проявляется в виде пичков на импульсах (рисунок 11 а), а в спектральном – как уширение спектра импульса (рисунок 11 б).

Появление пичков на импульсах связано с эффектом самовоздействия волн. Этот эффект приводит к тому, что длина волны на заднем фронте импульса оказывается короче длины волны на переднем фронте. Волокно с положительной дисперсией ускоряет волну заднего фронта сильнее, чем более длинную волну переднего фронта. Когда задний фронт входит во взаимодействие с передним фронтом, возникает интерференция, которая и служит причиной образования пичков на передаваемых импульсах. После взаимодействие с передним фронтом, возникает интерференция, которая и служит причиной образования пичков на передаваемых импульсах. После детектирования оптического сигнала и последующей электрической фильтрации амплитуда пичков уменьшается так, что они не оказывают существенного влияния на работу систем протяженностью менее 1000 км.

Рисунок 11 – Влияние на оптический импульс модуляционной нестабильности


Эффект четырехволонового смешения ЧВС/FWM проявляется только в многоволновых системах. В системах WDM, использующих световые волны с близкими частотами, зависимость показателя преломления от интенсивности не только вызывает смещение фазы внутри канала, но и создаёт сигналы на новых частотах. Для этого достаточно, чтобы в нелинейном взаимодействии участвовало не менее двух световых волн с близкими частотами f1 и f2 (то есть в одном окне прозрачности). В этом случае по полной аналогии с электрическими цепями, между ними будет наблюдаться нелинейное взаимодействие в силу нелинейности передаточной функции, будь она активной (то есть с усилением) или пассивной (с ослаблением). Тогда согласно рисунку 11 б появившиеся при нелинейном взаимодействии комбинационные частоты (2f1 – f2 и 2f2 – f1) будут близки к исходным и располагаются в рассматриваемом диапазоне частот (длин волн).

Если же в нелинейном взаимодействии участвуют три световые волны с близкими частотами (fi, fj, fk), то некоторые из вновь созданных комбинационных частот fi ± fj ± fk также будут близки к исходным частотам и попадут в спектральные каналы CWDM/DWDM системы и вызовут перекрёстные помехи. Наибольшее беспокойство вызывает сигнал, соответствующий

рефракционный оптический спектральный дисперсия

fijk= fi+ fj– fk, (6)

где fijk – частота появившейся новой четвёртой волны, которая близка к частотам породивших её волн.

Рисунок 12 - Нелинейное взаимодействие при двух световых волнах


В качестве примера рассмотрим простейшую систему с тремя длинами волн (l1, l2, l3), которая подвержена FWM искажениям. В такой системе возникнут девять длин волн, обязанных исходным сигналам (см. рисунок 12). На самом деле число интермодуляционных продуктов много больше, но они располагаются достаточно далеко от исходных входных длин волн. Предположим, что входные волны составляют : l1=1551,72 нм; l2=1552,52 нм; l3=1553,32 нм. Комбинационные продукты третьего порядка составят значения: l1+l2-l3=1550,92 нм; l1-l2+l3=1552,52 нм; l2+l3+l1=1554,12 нм; l1-l2+l3=1552,52 нм; l2+l3-l1=1554,12 нм; 2l1-l3=1550,12 нм; 2l3-l1=1554,92 нм; 2l2-l1=1553,32 нм; 2l3-l2=1554,12 нм.

Можно заметить, что три составляющие интермодуляционных искажений по длине волны совпадают с исходными сигналами. Оставшиеся шесть составляющих немного частотно смещены (см. рисунок 13) и принципиально могут быть отфильтрованы. Ситуация много усложняется с ростом числа исходных сигналов N, так как число интермодуляционных составляющих

резко увеличивается по формуле:

(7)

На рисунке 14 показана зависимость общего числа интермодуляционных составляющих

от числа исходных сигналов. Так, для 4, 8 и 16-ти исходных сигналов число комбинационных составляющих составит соответственно 24, 224 и 1920.

Никакая фильтрация уже не способна устранить близлежащие или совпадающие по частоте продукты интермодуляции. В силу этого системы с грубым спектральным мультиплексированием СWDM являются значительно более помехозащищенными в сравнении с системами плотного волнового мультиплексирования DWDM, что вполне логично. Также при равном числе транслируемых каналов (например, до 8), системы DWDM значительно более помехозащищены в силу большей избирательности и большей узкополосности самих оптических передатчиков.

Рисунок 14 – Зависимость интермодуляционных составляющих от числа исходных сигналов

Таким образом, единственным способом защиты от FWM при большом числе транслируемых каналов является устранение причин ее возникновения. На эффективность FWM (то есть на величину возникающих интермодуляционных составляющих) влияют два основных фактора: межканальный интервал расстановки оптических несущих (типовые значения 0,8 нм или 100 ГГц; 0,4 нм или 50 ГГц и 0,2 нм или 25 ГГц) и волоконная дисперсия (D). С увеличением межканального интервала эффективность FWM понижается при любой дисперсии ОВ (см. рисунок 15).