Смекни!
smekni.com

Рассеяние электронной плотности в металлах и ионных кристаллах по рентгенографическим данным (стр. 5 из 9)

Тем самым было показано, что частотный комптоновский профиль несет информацию о функции одномерного (в проекции на k) распределения электронов по импульсам. Именно это обстоятельство и определяет важность изучения КЭ, так как из импульсного распределения с помощью фурье-преобразования можно получить функцию распределения электронной плотности |ψi(r)|2. Уже ранние работы Дю-Монда с сотрудниками продемонстрировали перспективность этого метода для изучения электронного импульсного распределения, который к настоящему времени значительно усовершенствован и доведен до рабочего во многих исследовательских центрах. [16]

Основным приближением в теории КЭ является так называемая импульсная аппроксимация.

Проекция импульса

(2.1.4)

характеризует отклонение l = λ2 - λ20 длины волны сигнала λ2 от центра комптоновской линии λ20 = λ1 + 2λсsin2(

/2), λс – комптоновская длина волны.

Выражение для импульсной аппроксимации имеет вид

(2.1.5)

где χi(p) - фурье-компонента волновой функции основного состояния ψi(r). Функция J(q) называется комптоновским профилем (КП) и (2.1.5) является основным соотношением теории ИА.

Рис 2.1.2. Схематическая диаграмма КП в типичном эксперименте.

Обычно же на практике используется обратная процедура, т. е. вначале выбирается система волновых функций ψi, находится теоретическое значение J(q) и сравнивается с экспериментальным профилем. В случае значительного расхождения берется другая система функций и процедура повторяется, т.е. если подобрать χi(p), то можно найти распределение импульсов в кристалле. В свою очередь распределение импульсов в кристалле связано через Фурье-преобразование с распределением электронной плотности в кристалле. По распределению электронной плотности в кристалле можно судить о внешних валентных электронах, а по ним судить о химической связи вещества, т. к. внешние валентные электроны отвечают за химическую связь.

В комптоновский профиль дают вклады как внешние, так и внутриатомные электроны. Волновые функции внешних электронов в твердом теле сильно отличаются от ψ-функций свободных атомов, а для сильно связанных электронов перекрытием с соседними атомами можно пренебречь. Это приводит к тому, что вклад в КП за счет локализованных атомных электронов можно вычислить с большой точностью. Отсюда, зная полный экспериментальный профиль, простым вычитанием легко выделить вклад внешних электронов. Это является одной из основных причин исследования КП.

Для металлов и вообще веществ с большой концентрацией электронов ИА можно получить на основе идеализированной модели поведения электронов в металле, т. е. на основе теории электронного газа Ферми – Дирака и модели свободных атомов.

Для вырожденного электронного газа |χ(p ≤ pF)|2 = 3/4πpF3 и |χ(p)|2 = 0 при р > pF, где pF = ħkF импульс Ферми

(2.1.6)

где n – атомная концентрация.

Из (2.1.4) следует, что комптоновский профиль электронов проводимости имеет вид «перевернутой» параболы:

(2.1.7)

В модели свободных атомов с волновой функцией K-электрона ψK = (πa3)-1/2 * exp(-r/a), где а = a0/Z и а0 = ħ2/mc2 боровский радиус:


(2.1.8)

где величина qK = ħ/a определяет ширину КП K-электронов.

На рисунке (2.1.3) приведен результат Филлипса и Вейсса по наблюдению рассеяния излучения MoKα в Li под углом 117° (верхняя кривая с точками). [17] Нижняя сплошная кривая проведена для компоненты Kα1 с поправкой на фон и поглощение, пунктирные кривые 1 (обратная парабола) и 2 рассчитаны соответственно для свободных электронов проводимости и 1s2-электронов в приближении Хартри – Фока.

Обычно величина проекции импульса на ось Z находится от середины до линии КП, не учитывая ширину спектральной линии падающего излучения. Для MoKα1 излучения с длинной волны λ = 0,70926 Å полуширина спектральной линии Δλ составляет 0,00029 Å. С учетом этого, для электронов с нулевым импульсом профиль будет иметь δ-образную форму, как показано на рис.(2.1.1). Если определить импульс не от середины КП, а от δ-образного пика, то появится поправка порядка ~ 1%. Однако, если учесть что КП рассчитывается с точностью до долей процента, то указанная поправка существенна. [18]

2.2 Экспериментальные методы исследования комптоновского рассеяния

Особенности экспериментального исследования Комптон эффекта

Исследование комптоновского рассеяния связано с рядом особенностей и трудностей. Одна из этих трудностей заключается в том, что интенсивность некогерентного излучения очень мала. Это в основном связано с необходимостью применения кристалла – анализатора для отделения некогерентного излучения от остального фона. Отсюда вытекает необходимость либо увеличивать мощность рентгеновских трубок, либо увеличивать время экспозиции, либо совершенствовать экспериментальные установки.

Существует несколько методов исследования комптоновского рассеяния с помощью рентгеновского излучения.

Первый метод основывается на использовании монохроматического излучения, например MoKa, с последующим отделением комптоновской составляющей при помощи кристалла-анализатора. Большим недостатком данного метода является то, что интенсивность комптоновской составляющей очень мала и она плохо различима над уровнем фона. Применение данного метода требует использование рентгеновского излучения большой мощности.

Второй метод заключается в определении полного диффузного рассеяния без применения кристалла анализатора. Здесь предполагается, что полное диффузное рассеяние состоит только из теплового диффузного рассеяния и комптоновского рассеяния. Отделение теплового диффузного рассеяния производилось путем проведения эксперимента при низких температурах или его теоретической оценкой. Применение данного метода не позволяет установить распределение импульсов электронов.

Третий метод заключается в том, что на рассеивающее вещество направляется весь полихроматический луч, а рассеянное излучение анализируется при помощи кристалла анализатора. Впервые данный метод предложил Чипмэн и в дальнейшем он широко использовался.

Одним из методов повышения интенсивности рассеянного излучения является применение фокусировки вторичного излучения.

Метод фокусировки по Бреггу – Брентано широко применяется для решения ряда задач рентгеноструктурного анализа, в которых необходимо точное измерение ширины линий на рентгенограммах, т.к. при недостаточно четкой центровке расширения линий может происходить за счет несоблюдения геометрии съемки. Кроме того, применение фокусировки позволяет увеличить интенсивность рассеянного излучения. [19]

Другой проблемой является отсутствие серийно выпускаемой рентгеновской аппаратуры для их исследований, а использование не специализированной аппаратуры может сказаться на результатах эксперимента.

Точность определения комптоновского профиля в свою очередь зависит от многих факторов, например, таких как соблюдение геометрии хода лучей, точности определения угла кристалла-анализатора, его отражающей и разрешающей способности, времени экспозиции, угла некогерентного рассеяния рентгеновских лучей, методов сглаживания профиля по экспериментальным данным и разделения дублета Кa. [20]

Методика получения комптоновских профилей

Поскольку комптоновское излучение имеет очень малую интенсивность. Это является основной причиной того, что эксперимент по определению комптоновского профиля занимает продолжительное время.

Использование автоматизированной рентгеновской установки ДРОН-3 при получении комптоновских профилей позволило полностью освободить экспериментатора от постоянного контроля за ходом эксперимента, проводить непрерывный эксперимент длительное время без внешнего вмешательства (время снятия комптоновского профиля одного исследуемого образца с шагом сканирования 0.050 и экспозицией в каждой экспериментальной точке 2000 с составляет в среднем 36 часов), значительно облегчить обработку экспериментальных результатов, обрабатывать промежуточные результаты без остановки эксперимента. [21]

Для исследования комптоновского рассеяния использовалась рентгенооптическая схема с фокусировкой кристалла-анализатора по Бреггу-Брентано, приведенная на рисунке 2.2.1.

Источником рентгеновских лучей служила трубка БСВ-23 с молибденовым анодом, для которого длина волны рентгеновского излучения Ka1=0,70926 Å, Ka2=0,71354 Å, Kb=0,63225 Å. Приемником рентгеновского излучения служил сцинтилляционный детектор БДС NaJ(Tl) с дискриминатором импульсов кристаллом. [22]

Рентгеновский пучок первичного излучения формировался щелью шириной 2 мм, а вторичного (рассеянного) излучения вертикальной щелью шириной 0.5 мм и горизонтальной щелью высотой 6 мм. Перед детектором устанавливалась щель шириной 0.25 мм. Система щелей Соллера, а также фильтр для отсеивания Kb излучения не использовались.